⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 line_d.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2000,2001  Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel).  All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Kernel_d/include/CGAL/Kernel_d/Line_d.h $// $Id: Line_d.h 35126 2006-11-10 13:36:37Z hemmer $// //// Author(s)     : Michael Seel#ifndef CGAL_LINE_D_H#define CGAL_LINE_D_H#include <CGAL/Kernel_d/Pair_d.h> #include <CGAL/Kernel_d/Segment_d.h> #include <CGAL/Kernel_d/Ray_d.h>CGAL_BEGIN_NAMESPACEtemplate <class R>std::istream& operator>>(std::istream&, Line_d<R>&);template <class R>std::ostream& operator<<(std::ostream&, const Line_d<R>&);/*{\Manpage {Line_d}{R}{Lines in d-space}{l}}*/template <class p_R>class Line_d : public Handle_for< Pair_d<p_R> > {   typedef Pair_d<p_R>      Pair;  typedef Handle_for<Pair> Base;  typedef Line_d<p_R>      Self;  using Base::ptr;/*{\Mdefinition An instance of data type |Line_d| is an oriented line in$d$-dimensional Euclidian space.}*/public: /*{\Mtypes 5}*/typedef p_R R;/*{\Mtypemember the representation type.}*/typedef typename p_R::RT RT;/*{\Mtypemember the ring type.}*/typedef typename p_R::FT FT;/*{\Mtypemember the field type.}*/typedef typename p_R::LA LA;/*{\Mtypemember the linear algebra layer.}*/typedef typename Vector_d<R>::Base_vector Base_vector;friend class Ray_d<R>; friend class Segment_d<R>; private:Line_d(const Base& b) : Base(b) {}public: /*{\Mcreation 3}*/Line_d() : Base( Pair() ) {}/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| and initializes it to some line in $d$ - dimensional space }*/Line_d(const Point_d<R>& p, const Point_d<R>& q)/*{\Mcreate introduces a line through |p| and |q| and orientedfrom |p| to |q|. \precond $p$ and $q$ are distinct and have the same dimension.}*/ : Base( Pair(p,q) ){ CGAL_assertion_msg(!ptr()->is_degenerate(),     "Line_d::constructor: the two points must be different." );  CGAL_assertion_msg((p.dimension()==q.dimension()),     "Line_d::constructor: the two points must have the same dimension." );}Line_d(const Point_d<R>& p, const Direction_d<R>& dir)/*{\Mcreate introduces a line through |p| with direction |dir|.\precond |p| and |dir| have the same dimension, |dir| is not trivial. }*/  : Base( Pair(p,p+dir.vector()) ){ CGAL_assertion_msg((p.dimension()==dir.dimension()),     "Line_d::constructor: the p and dir must have the same dimension." );  CGAL_assertion_msg(!dir.is_degenerate(),     "Line_d::constructor: dir must be non-degenerate." );}Line_d(const Segment_d<R>& s) /*{\Mcreate introduces a variable |\Mvar| of type |\Mname| and initializes it to the line through |s.source()| and |s.target()|with direction from |s.source()| to |s.target()|.\precond $s$ is not degenerate. }*/  : Base( s ) { CGAL_assertion_msg((!s.is_degenerate()),     "Line_d::constructor: segment is trivial.");}Line_d(const Ray_d<R>& r) : Base(r) {}/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| and initializes it to the line through |r.point(1)| and |r.point(2)|. }*/Line_d(const Line_d<R>& l) : Base(l) {}/*{\Moperations 3 3}*/int dimension() const { return (ptr()->_p[0].dimension()); }/*{\Mop returns the dimension of the underlying space.}*/Point_d<R> point(int i) const /*{\Mop returns an arbitrary point on |l|.  It holds that |point(i) ==point(j)|, iff |i==j|. Furthermore, |l| is directed from |point(i)| to|point(j)|, for all |i < j|.}*/{ return (ptr()->_p[i%2]); }Line_d<R> opposite() const /*{\Mop returns the line |(point(2),point(1))|. }*/{ return Line_d<R>(point(1),point(0)); }Direction_d<R> direction() const /*{\Mop  returns the direction of |\Mvar|. }*/{ return ptr()->direction(); }Line_d<R> transform(const Aff_transformation_d<R> & t) const/*{\Mop returns $t(l)$. }*/{ return Line_d<R>(point(0).transform(t),point(1).transform(t)); }Line_d<R> operator+(const Vector_d<R>& v) const/*{\Mbinop returns |\Mvar+v|, i.e., |\Mvar| translated by vector $v$.}*/ { return Line_d<R>(point(0)+v,point(1)+v); }Point_d<R> projection(const Point_d<R>& p) const/*{\Mop returns the point of intersection of |\Mvar| with the hyperplane that is orthogonal to |\Mvar| through |p|. }*/{ Vector_d<R> v = direction().vector();  Point_d<R> q = point(0);  FT lambda = ((p-q) * v) / (v*v);  Point_d<R> res = q + lambda * v;  return res;}bool has_on(const Point_d<R>& p) const /*{\Mopl returns true if $p$ lies on |\Mvar| and false otherwise. }*/{ typename R::Position_on_line_d pos; FT dummy;  return pos(p,point(0),point(1),dummy); }bool operator==(const Line_d<R>& l1) const{ if ( this->identical(l1) ) return true;  if ( dimension() != l1.dimension() ) return false;  return has_on(l1.point(0)) &&          direction() == l1.direction(); }bool operator!=(const Line_d<R>& l1) const{ return !operator==(l1); }friend std::istream& operator>> <> (std::istream&, Line_d<R>&);friend std::ostream& operator<< <> (std::ostream&, const Line_d<R>&);}; // end of class/*{\Mtext \headerline{Non-Member Functions} }*/template <class R>bool weak_equality(const Line_d<R>& l1, const Line_d<R>& l2)/*{\Mfunc Test for equality as unoriented lines.}*/{ if (l1.identical(l2)) return true;  if (l1.dimension()!=l2.dimension()) return false;  return (l1.has_on(l2.point(0)) &&           l1.has_on(l2.point(1))); }template <class R>bool parallel(const Line_d<R>& l1, const Line_d<R>& l2)/*{\Mfunc returns true if |l1| and |l2| are parallel as unoriented linesand false otherwise. }*/{ return (l1.direction() == l2.direction() ||          l1.direction() == -l2.direction()); }template <class R>std::istream& operator>>(std::istream& I, Line_d<R>& l) { l.copy_on_write(); l.ptr()->read(I);   CGAL_assertion_msg(l.point(0)!=l.point(1),    "Line_d::operator>>: trivial line.");  CGAL_assertion_msg(l.point(0).dimension()==l.point(1).dimension(),    "Line_d::operator>>: dimensions disagree.");  return I; }template <class R>std::ostream& operator<<(std::ostream& O, const Line_d<R>& l){ l.ptr()->print(O,"Line_d"); return O; }/*{\Mimplementation Lines are implemented by a pair of points as an item type.  Alloperations like creation, initialization, tests, directioncalculation, input and output on a line $l$ take time$O(|l.dimension()|)$. |dimension()|, coordinate and point access, andidentity test take constant time.  The operations for intersectioncalculation also take time $O(|l.dimension()|)$. The space requirementis $O(|l.dimension()|)$.}*/CGAL_END_NAMESPACE#endif // CGAL_LINE_D_H//----------------------- end of file ----------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -