📄 ray_d.h
字号:
// Copyright (c) 2000,2001 Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel). All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Kernel_d/include/CGAL/Kernel_d/Ray_d.h $// $Id: Ray_d.h 35126 2006-11-10 13:36:37Z hemmer $// //// Author(s) : Michael Seel#ifndef CGAL_RAY_D_H#define CGAL_RAY_D_H#include <CGAL/Kernel_d/Pair_d.h>#include <CGAL/Kernel_d/Segment_d.h> #include <CGAL/Kernel_d/Line_d.h>CGAL_BEGIN_NAMESPACEtemplate <class R>std::istream& operator>>(std::istream&, Ray_d<R>&);template <class R>std::ostream& operator<<(std::ostream&, const Ray_d<R>&);/*{\Manpage {Ray_d}{R}{Rays in d-space}{r}}*/template <class p_R>class Ray_d : public Handle_for< Pair_d<p_R> > { typedef Pair_d<p_R> Pair; typedef Handle_for<Pair> Base; typedef Ray_d<p_R> Self; using Base::ptr;/*{\MdefinitionAn instance of data type |Ray_d| is a ray in $d$-dimensionalEuclidian space. It starts in a point called the source of |\Mvar| andit goes to infinity.}*/public: /*{\Mtypes 4}*/typedef p_R R;/*{\Mtypemember the representation type.}*/typedef typename p_R::RT RT;/*{\Mtypemember the ring type.}*/typedef typename p_R::FT FT;/*{\Mtypemember the field type.}*/typedef typename p_R::LA LA;/*{\Mtypemember the linear algebra layer.}*/typedef typename Vector_d<R>::Base_vector Base_vector;friend class Line_d<R>; friend class Segment_d<R>; private:Ray_d(const Base& b) : Base(b) {}public: /*{\Mcreation 3}*/Ray_d() : Base( Pair() ) {}/*{\Mcreate introduces some ray in $d$-dimensional space }*/ Ray_d(const Point_d<R>& p, const Point_d<R>& q)/*{\Mcreate introduces a ray through |p| and |q| and starting at |p|.\precond $p$ and $q$ are distinct and have the same dimension. }*/ : Base( Pair(p,q) ){ CGAL_assertion_msg(!ptr()->is_degenerate(), "Ray_d::constructor: the two points must be different." ); CGAL_assertion_msg((p.dimension()==q.dimension()), "Ray_d::constructor: the two points must have the same dimension." );}Ray_d(const Point_d<R>& p, const Direction_d<R>& dir)/*{\Mcreate introduces a ray starting in |p| with direction |dir|.\precond |p| and |dir| have the same dimension and |dir| is nottrivial.}*/ : Base( Pair(p,p+dir.vector()) ){ CGAL_assertion_msg((p.dimension()==dir.dimension()), "Ray_d::constructor: the p and dir must have the same dimension." ); CGAL_assertion_msg(!dir.is_degenerate(), "Ray_d::constructor: dir must be non-degenerate." );}Ray_d(const Segment_d<R>& s) /*{\Mcreate introduces a ray through |s.source()| and |s.target()| and starting at |s.source()|. \precond $s$ is not trivial. }*/ : Base( s ) { CGAL_assertion_msg(!s.is_degenerate(), "Ray_d::constructor: segment is trivial.");}Ray_d(const Ray_d<R>& r) : Base(r) {}/*{\Moperations 3 3}*/int dimension() const { return (ptr()->_p[0].dimension()); }/*{\Mop returns the dimension of the underlying space.}*/Point_d<R> source() const { return (ptr()->_p[0]); }/*{\Mop returns the source point of |\Mvar|. }*/Point_d<R> point(int i) const /*{\Mop returns a point on |\Mvar|. |point(0)| is the source.|point(i)|, with $i>0$, is different from the source. \precond $i\geq 0$.}*/ { return (ptr()->_p[i%2]); }Direction_d<R> direction() const /*{\Mop returns the direction of |\Mvar|. }*/{ return ptr()->direction(); }inline Line_d<R> supporting_line() const; /*{\Mop returns the supporting line of |\Mvar|.}*/Ray_d<R> opposite() const/*{\Mop returns the ray with direction opposite to |\Mvar|and starting in |source|.}*/{ return Ray_d<R>(source(),-direction()); }Ray_d<R> transform(const Aff_transformation_d<R>& t) const/*{\Mop returns $t(l)$. }*/{ return Ray_d<R>(point(0).transform(t),point(1).transform(t)); }Ray_d<R> operator+(const Vector_d<R>& v) const/*{\Mbinop returns |\Mvar+v|, i.e., |\Mvar| translated by vector $v$.}*/ { return Ray_d<R>(point(0)+v, point(1)+v); }bool has_on(const Point_d<R>& p) const /*{\Mop A point is on |r|, iff it is equal to the source of |r|, or if it isin the interior of |r|.}*/{ typename R::Position_on_line_d pos; FT l; if (pos(p,point(0),point(1),l)) return (FT(0)<=l); return false;}/*{\Mtext \headerline{Non-Member Functions}}*/bool operator==(const Ray_d<R>& r1) const{ if ( this->identical(r1) ) return true; if ( dimension() != r1.dimension() ) return false; return source() == r1.source() && direction() == r1.direction(); }bool operator!=(const Ray_d<R>& r1){ return !operator==(r1); }friend std::istream& operator>> <> (std::istream&, Ray_d<R>&);friend std::ostream& operator<< <> (std::ostream&, const Ray_d<R>&); }; // end of classtemplate <class R>bool parallel(const Ray_d<R>& r1, const Ray_d<R>& r2)/*{\Mfunc returns true if the unoriented supporting lines of |r1| and |r2|are parallel and false otherwise. }*/{ return (r1.direction() == r2.direction()) || (r1.direction() == -(r2.direction())); } template <class R>std::istream& operator>>(std::istream& I, Ray_d<R>& r) { r.copy_on_write(); r.ptr()->read(I); CGAL_assertion_msg(r.point(0)!=r.point(1), "Line_d::operator>>: trivial ray."); CGAL_assertion_msg(r.point(0).dimension()==r.point(1).dimension(), "Ray_d::operator>>: dimensions disagree."); return I; }template <class R>std::ostream& operator<<(std::ostream& O, const Ray_d<R>& r){ r.ptr()->print(O,"Ray_d"); return O; }/*{\Mimplementation Rays are implemented by a pair of points as an item type. Alloperations like creation, initialization, tests, directioncalculation, input and output on a ray $r$ take time$O(|r.dimension()|)$. |dimension()|, coordinate and point access, andidentity test take constant time. The space requirement is$O(|r.dimension()|)$.}*/CGAL_END_NAMESPACE#endif // CGAL_RAYHD_H//----------------------- end of file ----------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -