⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrix__.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
📖 第 1 页 / 共 2 页
字号:
\\|M.row_dimension() == M1.row_dimension()| and\\|M.column_dimension() == M1.column_dimension()|}}*/Matrix_<NT_,AL_> operator+ (const Matrix_<NT_,AL_>& M1); /*{\Mbinop Addition. \precond \dimeq.}*/Matrix_<NT_,AL_> operator- (const Matrix_<NT_,AL_>& M1); /*{\Mbinop Subtraction. \precond \dimeq.}*/Matrix_<NT_,AL_> operator-(); // unary/*{\Munop Negation.}*/Matrix_<NT_,AL_>& operator-=(const Matrix_<NT_,AL_>&); Matrix_<NT_,AL_>& operator+=(const Matrix_<NT_,AL_>&); Matrix_<NT_,AL_> operator*(const Matrix_<NT_,AL_>& M1) const; /*{\Mbinop Multiplication. \precond \\ |\Mvar.column_dimension() = M1.row_dimension()|. }*/Vector_<NT_,AL_> operator*(const Vector_<NT_,AL_>& vec) const{  return ((*this) * Matrix_<NT_,AL_>(vec)).to_vector(); }/*{\Mbinop  Multiplication with vector. \precond \\|\Mvar.column_dimension() = vec.dimension()|.}*/Matrix_<NT_,AL_> compmul(const NT& x) const; static int compare(const Matrix_<NT_,AL_>& M1,                    const Matrix_<NT_,AL_>& M2);}; // end of class/*{\Xtext \headerline{Input and Output}}*/template <class NT_, class AL_> std::ostream&  operator<<(std::ostream& os, const Matrix_<NT_,AL_>& M);/*{\Xbinopfunc writes matrix |\Mvar| row by row to the output stream |os|.}*/template <class NT_, class AL_> std::istream&  operator>>(std::istream& is, Matrix_<NT_,AL_>& M);/*{\Xbinopfunc reads matrix |\Mvar| row by row from the input stream |is|.}*/template <class NT_, class AL_>Matrix_<NT_,AL_>::Matrix_(int dim) : dm_(dim),dn_(dim){   CGAL_assertion_msg((dim >= 0),     "Matrix_::constructor: negative dimension.");  if (dm_ > 0) {     allocate_mat_space(v_,dm_);    for (int i=0; i<dm_; i++)       v_[i] = new Vector(dn_);  } else     v_ = (Vector**)0; }template <class NT_, class AL_>Matrix_<NT_,AL_>::Matrix_(int dim1, int dim2) : dm_(dim1),dn_(dim2){   CGAL_assertion_msg((dim1>=0 && dim2>=0),     "Matrix_::constructor: negative dimension.");  if (dm_ > 0) {     allocate_mat_space(v_,dm_);    for (int i=0; i<dm_; i++)       v_[i] = new Vector(dn_);   } else     v_ = (Vector**)0; }template <class NT_, class AL_>Matrix_<NT_,AL_>::Matrix_(std::pair<int,int> p) : dm_(p.first),dn_(p.second){   CGAL_assertion_msg((dm_>=0 && dn_>=0),     "Matrix_::constructor: negative dimension.");  if (dm_ > 0) {     allocate_mat_space(v_,dm_);    for (int i=0; i<dm_; i++)       v_[i] = new Vector(dn_);   } else     v_ = (Vector**)0; }template <class NT_, class AL_>Matrix_<NT_,AL_>::Matrix_(int dim, const Identity&, const NT& x) : dm_(dim),dn_(dim){ CGAL_assertion_msg((dim >= 0),    "matrix::constructor: negative dimension.");  if (dm_ > 0) {     allocate_mat_space(v_,dm_);    for (int i=0; i<dm_; i++)       v_[i] = new Vector(dn_);     if (x!=NT(0)) for (int i=0; i<dm_; ++i) elem(i,i)=x;  } else     v_ = (Vector**)0; }template <class NT_, class AL_>Matrix_<NT_,AL_>::Matrix_(int dim1, int dim2, const NT& x) : dm_(dim1),dn_(dim2){ CGAL_assertion_msg((dim1>=0 && dim2>=0),     "Matrix_::constructor: negative dimension.");  if (dm_ > 0) {     allocate_mat_space(v_,dm_);    for (int i=0; i<dm_; ++i) v_[i] = new Vector(dn_,x);  } else     v_ = (Vector**)0; }template <class NT_, class AL_>Matrix_<NT_,AL_>::Matrix_(const Matrix_<NT_,AL_>& p) : dm_(p.dm_),dn_(p.dn_){ if (dm_ > 0) {      allocate_mat_space(v_,dm_);    for (int i=0; i<dm_; i++)       v_[i] = new Vector(*p.v_[i]);   }  else     v_ = (Vector_<NT_,AL_>**)0; }template <class NT_, class AL_>Matrix_<NT_,AL_>::Matrix_(const Vector& v) : dm_(v.d_),dn_(1){ if (dm_>0) allocate_mat_space(v_,dm_);  else v_ = (Vector_<NT_,AL_>**)0;   for(int i = 0; i < dm_; i++) {     v_[i] = new Vector(1);     elem(i,0) = v[i];   }}template <class NT_, class AL_>Matrix_<NT_,AL_>::Matrix_(int dim1, int dim2, NT** p) : dm_(dim1),dn_(dim2){   CGAL_assertion_msg((dim1 >= 0 && dim2 >= 0),     "Matrix_::constructor: negative dimension.");  if (dm_ > 0) {    allocate_mat_space(v_,dm_);    for(int i=0; i<dm_; i++) {       v_[i] = new Vector_<NT_,AL_>(dn_);       for(int j=0; j<dn_; j++)         elem(i,j) = p[i][j];     }  } else     v_ = (Vector_<NT_,AL_>**)0; }template <class NT_, class AL_>Matrix_<NT_,AL_>& Matrix_<NT_,AL_>::operator=(const Matrix_<NT_,AL_>& mat){   if (&mat == this)    return *this;  int i,j;   if (dm_ != mat.dm_ || dn_ != mat.dn_) {     for(i=0; i<dm_; i++) delete v_[i];     if (v_) deallocate_mat_space(v_,dm_);    dm_ = mat.dm_; dn_ = mat.dn_;     if (dm_>0)      allocate_mat_space(v_,dm_);    for(i = 0; i < dm_; i++)       v_[i] = new Vector(dn_);   }  for(i = 0; i < dm_; i++)    for(j = 0; j < dn_; j++)       elem(i,j) = mat.elem(i,j);   return *this; }template <class NT_, class AL_>Matrix_<NT_,AL_>::~Matrix_()  {   if (v_) {    for (int i=0; i<dm_; i++)       delete v_[i];      deallocate_mat_space(v_,dm_);  }}template <class NT_, class AL_>inline bool Matrix_<NT_,AL_>::operator==(const Matrix_<NT_,AL_>& x) const{   int i,j;   if (dm_ != x.dm_ || dn_ != x.dn_)     return false;   for(i = 0; i < dm_; i++)    for(j = 0; j < dn_; j++)      if (elem(i,j) != x.elem(i,j))         return false;   return true; }template <class NT_, class AL_>Matrix_<NT_,AL_> Matrix_<NT_,AL_>::operator+ (const Matrix_<NT_,AL_>& mat){   int i,j;   check_dimensions(mat);   Matrix_<NT_,AL_> result(dm_,dn_);   for(i=0; i<dm_; i++)    for(j=0; j<dn_; j++)      result.elem(i,j) = elem(i,j) + mat.elem(i,j);   return result; }template <class NT_, class AL_>Matrix_<NT_,AL_> Matrix_<NT_,AL_>::operator- (const Matrix_<NT_,AL_>& mat){   int i,j;   check_dimensions(mat);   Matrix_<NT_,AL_> result(dm_,dn_);   for(i=0; i<dm_; i++)    for(j=0; j<dn_; j++)      result.elem(i,j) = elem(i,j) - mat.elem(i,j);   return result; }template <class NT_, class AL_>Matrix_<NT_,AL_> Matrix_<NT_,AL_>::operator- ()  // unary{   int i,j;   Matrix_<NT_,AL_> result(dm_,dn_);   for(i=0; i<dm_; i++)    for(j=0; j<dn_; j++)      result.elem(i,j) = -elem(i,j);   return result; }template <class NT_, class AL_>Matrix_<NT_,AL_>& Matrix_<NT_,AL_>::operator-= (const Matrix_<NT_,AL_>& mat) {   int i,j;   check_dimensions(mat);   for(i=0; i<dm_; i++)    for(j=0; j<dn_; j++)      elem(i,j) -= mat.elem(i,j);   return *this; }template <class NT_, class AL_>Matrix_<NT_,AL_>& Matrix_<NT_,AL_>::operator+= (const Matrix_<NT_,AL_>& mat) {   int i,j;   check_dimensions(mat);   for(i=0; i<dm_; i++)    for(j=0; j<dn_; j++)      elem(i,j) += mat.elem(i,j);   return *this; }template <class NT_, class AL_>inline Matrix_<NT_,AL_> Matrix_<NT_,AL_>::operator*(const Matrix_<NT_,AL_>& M1) const{ CGAL_assertion_msg((dn_==M1.dm_),     "Matrix_::operator*: incompatible matrix types.");   Matrix_<NT_,AL_> result(dm_,M1.dn_);   int i,j,l;  for (i=0; i<dm_; ++i)    for (j=0; j<M1.dn_; ++j)      for (l=0; l<dn_; ++l)        result.elem(i,j) += elem(i,l)*M1.elem(l,j);  return result;}template <class NT_, class AL_>inline Matrix_<NT_,AL_> Matrix_<NT_,AL_>::compmul(const NT& f) const{   int i,j;   Matrix_<NT_,AL_> result(dm_,dn_);   for(i=0; i<dm_; i++)    for(j=0; j<dn_; j++)      result.elem(i,j) = elem(i,j) *f;   return result; }template <class NT, class AL>Matrix_<NT,AL>  operator*(const NT& x, const Matrix_<NT,AL>& M)/*{\Mbinopfunc Multiplication of every entry with |x|. }*/{ return M.compmul(x); }template <class NT, class AL>Matrix_<NT,AL>  operator*(const Matrix_<NT,AL>& M, const NT& x)/*{\Mbinopfunc Multiplication of every entry with |x|. }*/{ return M.compmul(x); }template <class NT_, class AL_> int Matrix_<NT_,AL_>::compare(const Matrix_<NT_,AL_>& M1, const Matrix_<NT_,AL_>& M2) { int i; int res;  M1.check_dimensions(M2);  for(i=0; i < M1.row_dimension() &&       (res = compare(M1.row(i),M2.row(i))) != 0; i++);  return res;}template <class NT_, class AL_> std::ostream&  operator<<(std::ostream& os, const Matrix_<NT_,AL_>& M){   /* syntax: d1 d2              x_0,0    ... x_0,d1-1                  d2-times             x_d2-1,0 ... x_d2-1,d1-1 */    int d = M.row_dimension();    int k = M.column_dimension();    switch (os.iword(CGAL::IO::mode)) {    case CGAL::IO::BINARY:        CGAL::write( os, d);        CGAL::write( os, k);        for ( int i = 0; i < d; ++i) {            for ( int j = 0; j < k; ++j) {                CGAL::write( os, M[i][j]);            }        }        break;    case CGAL::IO::ASCII:        os << d << ' ' << k;        for ( int i = 0; i < d; ++i) {            for ( int j = 0; j < k; ++j) {                os << ' ' << M[i][j];            }        }        break;    case CGAL::IO::PRETTY:        os << "LA::Matrix((" << d << ", " << k << " [";        for ( int i = 0; i < d; ++i) {            for ( int j = 0; j < k; ++j) {                if ( j != 0)                    os << ',' << ' ';                os << M[i][j];            }            if ( i != d)                os << ",\n";        }        os << "])";        break;    }    return os;}template <class NT_, class AL_> std::istream&  operator>>(std::istream& is, Matrix_<NT_,AL_>& M) {   /* syntax: d1 d2              x_0,0  ... x_0,d1-1                  d2-times             x_d2,0 ... x_d2,d1-1 */  int cdim, rdim, i;  switch(is.iword(CGAL::IO::mode)) {    case CGAL::IO::BINARY :       CGAL::read(is,rdim);      CGAL::read(is,cdim);      for (i=0; i<rdim*cdim; ++i)        CGAL::read(is,M(i/rdim,i%cdim));      break;    case CGAL::IO::ASCII :      is >> rdim >> cdim;      M = Matrix_<NT_,AL_>(rdim,cdim);      for (i=0; i<rdim*cdim; ++i)        is >> M(i/rdim,i%cdim);      break;     default:      std::cerr<<"\nStream must be in ascii or binary mode"<<std::endl;      break;  }  return is;}template <class NT_, class AL_>typename Matrix_<NT_,AL_>::allocator_type Matrix_<NT_,AL_>::MM;/*{\Ximplementation The data type |\Mname| is implemented by two-dimensional arrays ofvariables of type |NT|. The memory layout is row oriented. Operation|column| takes time $O(n)$, |row|, |dim1|, |dim2| take constant time,and all other operations take time $O(nm)$.  The space requirement is$O(nm)$.}*/} // CGALLA#endif // CGAL_MATRIX___H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -