⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 aff_transformationcd.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2000,2001  Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel).  All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Kernel_d/include/CGAL/Kernel_d/Aff_transformationCd.h $// $Id: Aff_transformationCd.h 28567 2006-02-16 14:30:13Z lsaboret $// //// Author(s)     : Michael Seel#ifndef CGAL_AFF_TRANSFORMATIONCD_H#define CGAL_AFF_TRANSFORMATIONCD_H#ifndef NOCGALINCL#include <CGAL/basic.h>#include <CGAL/aff_transformation_tags.h>#include <CGAL/Handle_for.h>#include <CGAL/rational_rotation.h>#endifCGAL_BEGIN_NAMESPACEtemplate <class FT, class LA > class Aff_transformationCd;template <class FT, class LA > class Aff_transformationCd_rep;template <class FT, class LA>class Aff_transformationCd_rep {  friend class Aff_transformationCd<FT,LA>;  typedef typename LA::Matrix Matrix;  Matrix M_;public:  Aff_transformationCd_rep(int d) : M_(d+1) {}  Aff_transformationCd_rep(const Matrix& M_init) : M_(M_init) {}  ~Aff_transformationCd_rep() {}};template <class _FT, class _LA>class Aff_transformationCd :   public Handle_for< Aff_transformationCd_rep<_FT,_LA> > {   typedef Aff_transformationCd_rep<_FT,_LA> Rep;  typedef Handle_for<Rep> Base;  typedef Aff_transformationCd<_FT,_LA> Self;  using Base::ptr;public: typedef _FT RT;typedef _FT FT;typedef _LA LA;typedef typename _LA::Matrix Matrix;typedef typename _LA::Vector Vector;Aff_transformationCd(int d = 0) : Base( Rep(d) ) {}Aff_transformationCd(int d, Identity_transformation) : Base( Rep(d) ){ for (int i = 0; i <= d; ++i) ptr()->M_(i,i) = FT(1); }Aff_transformationCd(const Matrix& M) : Base( Rep(M) ){ CGAL_assertion_msg((M.row_dimension()==M.column_dimension()),  "Aff_transformationCd:: initialization matrix not quadratic.");  int d = M.row_dimension(),i;  for (i=0; i<d-1; ++i) CGAL_assertion(M(d-1,i)==FT(0));  CGAL_assertion(M(d-1,d-1)==FT(1));}template <typename Forward_iterator>Aff_transformationCd(Scaling, Forward_iterator start, Forward_iterator end) :  Base( Rep(std::distance(start,end)-1) )/*{\Mcreate introduces the transformation of $d$-space specified by adiagonal matrix with entries |set [start,end)| on the diagonal (a scaling of the space). \precond |set [start,end)| is a vector of dimension $d+1$.}*/{ int i=0; while (start != end) { ptr()->M_(i,i) = *start++;++i; } }Aff_transformationCd(Translation, const VectorCd<RT,LA>& v) :  Base( Rep(v.dimension()) ){ int d = v.dimension();  for (int i = 0; i < d; ++i) {    ptr()->M_(i,i) = FT(1);    ptr()->M_(i,d) = v.cartesian(i);  }  ptr()->M_(d,d) = FT(1);}Aff_transformationCd(int d, Scaling, const RT& num, const RT& den)   : Base( Rep(d) ) { Matrix& M = ptr()->M_;  for (int i = 0; i < d; ++i) M(i,i) = num/den;  M(d,d) = FT(1);}Aff_transformationCd(int d, Rotation,    const RT& sin_num, const RT& cos_num, const RT& den,   int e1 = 0, int e2 = 1) : Base( Rep(d) ){  CGAL_assertion_msg((sin_num*sin_num + cos_num*cos_num == den*den),    "planar_rotation: rotation parameters disobey precondition.");  CGAL_assertion_msg((0<=e1 && e1<=e2 && e2<d),     "planar_rotation: base vector indices wrong.");  Matrix& M = ptr()->M_;  for (int i=0; i<d; i++) M(i,i) = 1;  M(e1,e1) = cos_num/den; M(e1,e2) = -sin_num/den;  M(e2,e1) = sin_num/den; M(e2,e2) = cos_num/den;  M(d,d) = FT(1);}Aff_transformationCd(int d, Rotation, const DirectionCd<RT,LA>& dir,  const RT& eps_num, const RT& eps_den, int e1 = 0, int e2 = 1)   : Base( Rep(d) ){  CGAL_assertion(dir.dimension()==2);  Matrix& M = ptr()->M_;  for (int i=0; i<d; i++) M(i,i) = FT(1);  RT sin_num, cos_num, denom;  rational_rotation_approximation(dir.dx(), dir.dy(),                                  sin_num, cos_num, denom,                                  eps_num, eps_den);  M(e1,e1) = cos_num/denom; M(e1,e2) = -sin_num/denom;  M(e2,e1) = sin_num/denom; M(e2,e2) = cos_num/denom;  M(d,d) = FT(1);}int dimension() const { return ptr()->M_.row_dimension()-1; }const Matrix& matrix() const { return ptr()->M_; }bool is_odd() const { return LA::sign_of_determinant(matrix())<0; }Vector operator()(const Vector& v) const{ CGAL_assertion(matrix().row_dimension()-1==v.dimension());  const Matrix& M = ptr()->M_;  int i,j,d(v.dimension());  Vector res(d);  for (i=0; i<d; ++i) { // all rows    FT cres(0);     for (j=0; j<d; ++j) cres+=M(i,j)*v[j]; // per row    cres += M(i,d);    res[i]=cres;  }  return res; }Vector transform_linearly(const Vector& v) const{ CGAL_assertion(matrix().row_dimension()-1==v.dimension());  const Matrix& M = ptr()->M_;  int i,j,d(v.dimension());  Vector res(d);  for (i=0; i<d; ++i) { // all rows    FT cres(0);     for (j=0; j<d; ++j) cres+=M(i,j)*v[j]; // per row    res[i]=cres;  }  return res; }Aff_transformationCd<RT,LA> inverse() const{ Aff_transformationCd<RT,LA> Inv; RT D;   Vector dummy;  if ( !LA::inverse(matrix(),Inv.ptr()->M_,D,dummy) )   CGAL_assertion_msg(0,"Aff_transformationCd::inverse: not invertible.");   if ( D < FT(0) ) Inv.ptr()->M_ = -Inv.ptr()->M_;  return Inv;}  Aff_transformationCd<RT,LA>  operator*(const Aff_transformationCd<RT,LA>& s) const{ CGAL_assertion_msg((dimension()==s.dimension()),  "Aff_transformationCd::operator*: dimensions disagree.");  return Aff_transformationCd<RT,LA>(matrix()*s.matrix()); }bool operator==(const Aff_transformationCd<RT,LA>& a1) const{ if ( this->identical(a1) ) return true;  return ( matrix() == a1.matrix() );}bool operator!=(const Aff_transformationCd<RT,LA>& a1) const{ return !operator==(a1); }}; // Aff_transformationCdtemplate <class FT, class LA>std::ostream& operator<<(  std::ostream& os, const Aff_transformationCd<FT,LA>& t) { os << t.matrix(); return os; }template <class FT, class LA>std::istream& operator>>(  std::istream& is, Aff_transformationCd<FT,LA>& t){ typename LA::Matrix M(t.dimension());  is >> M; t = Aff_transformationCd<FT,LA>(M);   return is;}CGAL_END_NAMESPACE#endif // CGAL_AFF_TRANSFORMATIONCD_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -