📄 function_objectshd.h
字号:
// Copyright (c) 2000,2001 Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel). All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Kernel_d/include/CGAL/Kernel_d/function_objectsHd.h $// $Id: function_objectsHd.h 28567 2006-02-16 14:30:13Z lsaboret $// //// Author(s) : Michael Seel//---------------------------------------------------------------------// file generated by notangle from noweb/function_objectsHd.lw// please debug or modify noweb file// coding: K. Mehlhorn, M. Seel//---------------------------------------------------------------------#ifndef CGAL_FUNCTION_OBJECTSHD_H#define CGAL_FUNCTION_OBJECTSHD_H#ifndef NOCGALINCL#include <CGAL/basic.h>#include <CGAL/enum.h>#endifCGAL_BEGIN_NAMESPACEtemplate <class R>struct Lift_to_paraboloidHd {typedef typename R::Point_d Point_d;typedef typename R::RT RT;typedef typename R::LA LA;Point_d operator()(const Point_d& p) const{ int d = p.dimension(); typename LA::Vector h(d+2); RT D = p.homogeneous(d); RT sum = 0; for (int i = 0; i<d; i++) { RT hi = p.homogeneous(i); h[i] = hi*D; sum += hi*hi; } h[d] = sum; h[d+1] = D*D; return Point_d(d+1,h.begin(),h.end());}};template <class R>struct Project_along_d_axisHd {typedef typename R::Point_d Point_d;typedef typename R::RT RT;typedef typename R::LA LA;Point_d operator()(const Point_d& p) const{ int d = p.dimension(); return Point_d(d-1, p.homogeneous_begin(),p.homogeneous_end()-2, p.homogeneous(d));}};template <class R>struct MidpointHd {typedef typename R::Point_d Point_d;Point_d operator()(const Point_d& p, const Point_d& q) const{ return Point_d(p + (q-p)/2); }};template <class R>struct Center_of_sphereHd {typedef typename R::Point_d Point_d;typedef typename R::RT RT;typedef typename R::LA LA;template <class Forward_iterator>Point_d operator()(Forward_iterator start, Forward_iterator end) const{ CGAL_assertion(start!=end); int d = start->dimension(); typename LA::Matrix M(d); typename LA::Vector b(d); Point_d pd = *start++; RT pdd = pd.homogeneous(d); for (int i = 0; i < d; i++) { // we set up the equation for p_i Point_d pi = *start++; RT pid = pi.homogeneous(d); b[i] = 0; for (int j = 0; j < d; j++) { M(i,j) = RT(2) * pdd * pid * (pi.homogeneous(j)*pdd - pd.homogeneous(j)*pid); b[i] += (pi.homogeneous(j)*pdd - pd.homogeneous(j)*pid) * (pi.homogeneous(j)*pdd + pd.homogeneous(j)*pid); } } RT D; typename LA::Vector x; LA::linear_solver(M,b,x,D); return Point_d(d,x.begin(),x.end(),D);}}; // Center_of_sphereHdtemplate <class R>struct Squared_distanceHd {typedef typename R::Point_d Point_d;typedef typename R::Vector_d Vector_d;typedef typename R::FT FT;FT operator()(const Point_d& p, const Point_d& q) const{ Vector_d v = p-q; return v.squared_length(); }};template <class R>struct Position_on_lineHd {typedef typename R::Point_d Point_d;typedef typename R::LA LA;typedef typename R::FT FT;typedef typename R::RT RT;bool operator()(const Point_d& p, const Point_d& s, const Point_d& t, FT& l) const{ int d = p.dimension(); CGAL_assertion_msg((d==s.dimension())&&(d==t.dimension()&& d>0), "position_along_line: argument dimensions disagree."); CGAL_assertion_msg((s!=t), "Position_on_line_d: line defining points are equal."); RT lnum = (p.homogeneous(0)*s.homogeneous(d) - s.homogeneous(0)*p.homogeneous(d)) * t.homogeneous(d); RT lden = (t.homogeneous(0)*s.homogeneous(d) - s.homogeneous(0)*t.homogeneous(d)) * p.homogeneous(d); RT num(lnum), den(lden), lnum_i, lden_i; for (int i = 1; i < d; i++) { lnum_i = (p.homogeneous(i)*s.homogeneous(d) - s.homogeneous(i)*p.homogeneous(d)) * t.homogeneous(d); lden_i = (t.homogeneous(i)*s.homogeneous(d) - s.homogeneous(i)*t.homogeneous(d)) * p.homogeneous(d); if (lnum*lden_i != lnum_i*lden) return false; if (lden_i != 0) { den = lden_i; num = lnum_i; } } l = R::make_FT(num,den); return true; }};template <class R>struct Barycentric_coordinatesHd {typedef typename R::Point_d Point_d;typedef typename R::LA LA;typedef typename R::RT RT;template <class ForwardIterator, class OutputIterator>OutputIterator operator()(ForwardIterator first, ForwardIterator last, const Point_d& p, OutputIterator result){ TUPLE_DIM_CHECK(first,last,Barycentric_coordinates_d); int n = std::distance(first,last); int d = p.dimension(); typename R::Affine_rank_d affine_rank; CGAL_assertion(affine_rank(first,last)==d); typename LA::Matrix M(first,last); typename LA::Vector b(p.homogeneous_begin(),p.homogeneous_end()), x; RT D; LA::linear_solver(M,b,x,D); for (int i=0; i< x.dimension(); ++result, ++i) { *result= R::make_FT(x[i],D); } return result;}};template <class R>struct OrientationHd { typedef typename R::Point_d Point_d;typedef typename R::LA LA;template <class ForwardIterator>Orientation operator()(ForwardIterator first, ForwardIterator last){ TUPLE_DIM_CHECK(first,last,Orientation_d); int d = std::distance(first,last); // range contains d points of dimension d-1 CGAL_assertion_msg(first->dimension() == d-1, "Orientation_d: needs first->dimension() + 1 many points."); typename LA::Matrix M(d); // quadratic for (int i = 0; i < d; ++first,++i) { for (int j = 0; j < d; ++j) M(i,j) = first->homogeneous(j); } int row_correction = ( (d % 2 == 0) ? -1 : +1 ); // we invert the sign if the row number is even i.e. d is odd return Orientation(row_correction * LA::sign_of_determinant(M));}};template <class R>struct Side_of_oriented_sphereHd { typedef typename R::Point_d Point_d;typedef typename R::LA LA;typedef typename R::RT RT;template <class ForwardIterator> Oriented_side operator()(ForwardIterator first, ForwardIterator last, const Point_d& x){ TUPLE_DIM_CHECK(first,last,Side_of_oriented_sphere_d); int d = std::distance(first,last); // |A| contains |d| points CGAL_assertion_msg((d-1 == first->dimension()), "Side_of_oriented_sphere_d: needs first->dimension()+1 many input points."); typename LA::Matrix M(d + 1); for (int i = 0; i < d; ++first, ++i) { RT Sum = 0; RT hd = first->homogeneous(d-1); M(i,0) = hd*hd; for (int j = 0; j < d; j++) { RT hj = first->homogeneous(j); M(i,j + 1) = hj * hd; Sum += hj*hj; } M(i,d) = Sum; } RT Sum = 0; RT hd = x.homogeneous(d-1); M(d,0) = hd*hd; for (int j = 0; j < d; j++) { RT hj = x.homogeneous(j); M(d,j + 1) = hj * hd; Sum += hj*hj; } M(d,d) = Sum; return Oriented_side( - LA::sign_of_determinant(M) );}};template <class R>struct Side_of_bounded_sphereHd { typedef typename R::Point_d Point_d;typedef typename R::LA LA;typedef typename R::RT RT;template <class ForwardIterator> Bounded_side operator()(ForwardIterator first, ForwardIterator last, const Point_d& p){ TUPLE_DIM_CHECK(first,last,region_of_sphere); typename R::Orientation_d _orientation; Orientation o = _orientation(first,last); CGAL_assertion_msg((o != 0), "Side_of_bounded_sphere_d: \ A must be full dimensional."); typename R::Side_of_oriented_sphere_d _side_of_oriented_sphere; Oriented_side oside = _side_of_oriented_sphere(first,last,p); if (o == POSITIVE) { switch (oside) { case ON_POSITIVE_SIDE : return ON_BOUNDED_SIDE; case ON_ORIENTED_BOUNDARY: return ON_BOUNDARY; case ON_NEGATIVE_SIDE : return ON_UNBOUNDED_SIDE; } } else { switch (oside) { case ON_POSITIVE_SIDE : return ON_UNBOUNDED_SIDE; case ON_ORIENTED_BOUNDARY: return ON_BOUNDARY; case ON_NEGATIVE_SIDE : return ON_BOUNDED_SIDE; } } return ON_BOUNDARY; // never reached}};template <class R>struct Contained_in_simplexHd { typedef typename R::Point_d Point_d;typedef typename R::LA LA;typedef typename R::RT RT;template <class ForwardIterator> bool operator()(ForwardIterator first, ForwardIterator last, const Point_d& p) { TUPLE_DIM_CHECK(first,last,Contained_in_simplex_d); int k = std::distance(first,last); // |A| contains |k| points int d = first->dimension(); CGAL_assertion_code( typename R::Affinely_independent_d check_independence; ) CGAL_assertion_msg(check_independence(first,last), "Contained_in_simplex_d: A not affinely independent."); CGAL_assertion(d==p.dimension()); typename LA::Matrix M(d + 1,k); typename LA::Vector b(p.homogeneous_begin(),p.homogeneous_end()); for (int j = 0; j < k; ++first, ++j) { for (int i = 0; i <= d; ++i) M(i,j) = first->homogeneous(i); } RT D; typename LA::Vector lambda; if ( LA::linear_solver(M,b,lambda,D) ) { int s = CGAL_NTS sign(D); for (int j = 0; j < k; j++) { int t = CGAL_NTS sign(lambda[j]); if (s * t < 0) return false; } return true; } return false; }};template <class R>struct Contained_in_affine_hullHd { typedef typename R::Point_d Point_d;typedef typename R::LA LA;typedef typename R::RT RT;template <class ForwardIterator> bool operator()(ForwardIterator first, ForwardIterator last, const Point_d& p) { TUPLE_DIM_CHECK(first,last,Contained_in_affine_hull_d); int k = std::distance(first,last); // |A| contains |k| points int d = first->dimension(); typename LA::Matrix M(d + 1,k); typename LA::Vector b(p.homogeneous_begin(),p.homogeneous_end()); for (int j = 0; j < k; ++first, ++j) for (int i = 0; i <= d; ++i) M(i,j) = first->homogeneous(i); return LA::is_solvable(M,b); }};template <class R>struct Affine_rankHd { typedef typename R::Point_d Point_d;typedef typename R::Vector_d Vector_d;typedef typename R::LA LA;typedef typename R::RT RT;template <class ForwardIterator> int operator()(ForwardIterator first, ForwardIterator last) { TUPLE_DIM_CHECK(first,last,Affine_rank_d); int k = std::distance(first,last); // |A| contains |k| points if (k == 0) return -1; if (k == 1) return 0; int d = first->dimension(); typename LA::Matrix M(d,--k); Point_d p0 = *first; ++first; // first points to second for (int j = 0; j < k; ++first, ++j) { Vector_d v = *first - p0; for (int i = 0; i < d; i++) M(i,j) = v.homogeneous(i); } return LA::rank(M); }};template <class R>struct Affinely_independentHd { typedef typename R::Point_d Point_d;typedef typename R::LA LA;typedef typename R::RT RT;template <class ForwardIterator> bool operator()(ForwardIterator first, ForwardIterator last) { typename R::Affine_rank_d rank; int n = std::distance(first,last); return rank(first,last) == n-1;}};template <class R>struct Compare_lexicographicallyHd {typedef typename R::Point_d Point_d;typedef typename R::Point_d PointD; //MSVC hackComparison_result operator()(const Point_d& p1, const Point_d& p2){ return PointD::cmp(p1,p2); }};template <class R>struct Contained_in_linear_hullHd {typedef typename R::LA LA;typedef typename R::RT RT;typedef typename R::Vector_d Vector_d;template<class ForwardIterator>bool operator()( ForwardIterator first, ForwardIterator last, const Vector_d& x) { TUPLE_DIM_CHECK(first,last,Contained_in_linear_hull_d); int k = std::distance(first,last); // |A| contains |k| vectors int d = first->dimension(); typename LA::Matrix M(d,k); typename LA::Vector b(d); for (int i = 0; i < d; i++) { b[i] = x.homogeneous(i); for (int j = 0; j < k; j++) M(i,j) = (first+j)->homogeneous(i); } return LA::is_solvable(M,b); }};template <class R>struct Linear_rankHd {typedef typename R::LA LA;typedef typename R::RT RT;template <class ForwardIterator>int operator()(ForwardIterator first, ForwardIterator last){ TUPLE_DIM_CHECK(first,last,linear_rank); int k = std::distance(first,last); // k vectors int d = first->dimension(); typename LA::Matrix M(d,k); for (int i = 0; i < d ; i++) for (int j = 0; j < k; j++) M(i,j) = (first + j)->homogeneous(i); return LA::rank(M); }};template <class R>struct Linearly_independentHd {typedef typename R::LA LA;typedef typename R::RT RT;template <class ForwardIterator>bool operator()(ForwardIterator first, ForwardIterator last){ typename R::Linear_rank_d rank; return rank(first,last) == std::distance(first,last);}};template <class R>struct Linear_baseHd {typedef typename R::LA LA;typedef typename R::RT RT;typedef typename R::Vector_d Vector_d;template <class ForwardIterator, class OutputIterator>OutputIterator operator()(ForwardIterator first, ForwardIterator last, OutputIterator result){ TUPLE_DIM_CHECK(first,last,linear_base); int k = std::distance(first,last); // k vectors int d = first->dimension(); typename LA::Matrix M(d,k); for (int j = 0; j < k; j++) for (int i = 0; i < d; i++) M(i,j) = (first+j)->homogeneous(i); std::vector<int> indcols; int r = LA::independent_columns(M,indcols); for (int l=0; l < r; l++) { typename LA::Vector v = M.column(indcols[l]); *result++ = Vector_d(d,v.begin(),v.end(),1); } return result; }};CGAL_END_NAMESPACE#endif // CGAL_FUNCTION_OBJECTSHD_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -