📄 linear_algebracd_impl.h
字号:
// Copyright (c) 1999 Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel). All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Kernel_d/include/CGAL/Kernel_d/Linear_algebraCd_impl.h $// $Id: Linear_algebraCd_impl.h 38827 2007-05-23 13:36:07Z spion $// //// Author(s) : Herve.Bronnimann@sophia.inria.fr// Michael.Seel@mpi-sb.mpg.de#ifndef CGAL_LINEAR_ALGEBRACD_C#define CGAL_LINEAR_ALGEBRACD_C#include <algorithm>#include <functional>CGAL_BEGIN_NAMESPACEtemplate < class FT, class AL >typename Linear_algebraCd<FT,AL>::MatrixLinear_algebraCd<FT,AL>::transpose(const Matrix &M){ Matrix P(transpose(M.dimension())); int i, j; for (i=0; i<P.row_dimension(); ++i) for (j=0; j<P.column_dimension(); ++j) P[i][j] = M[j][i]; return P;}template < class FT, class AL >inline // in order to facilitate the optimization with unused variablesvoidLinear_algebraCd<FT,AL>::Gaussian_elimination(const Matrix &M, // return parameters Matrix &L, Matrix &U, std::vector<int> &row_permutation, std::vector<int> &column_permutation, FT &det, int &rank, Vector &c){ // Method: we use Gaussian elimination with division at each step // We do not use the variant by Bareiss (because we are on a field) // We obtain L, U, q, such that LM' = U, and U is upper diagonal, // where M' is M whose rows and columns are permuted // Picked up on the way: // det, rank, non-trivial solution c if system is degenerate (c^t M = 0) int i, j, k; int dim = M.row_dimension(), cdim = M.column_dimension(); // All the parameters are already initialized (as in C++) int sign = 1; // First create a copy of M into U, and set L and permutations to identity U = M; typename Matrix::Identity IDENTITY; L = Matrix(dim,IDENTITY); for (i=0; i<dim; ++i) row_permutation.push_back(i); for (i=0; i<cdim; ++i) column_permutation.push_back(i); // Main loop : invariant is that L * M[q] = U // M[q] stands for M with row i permuted with row q[i] CGAL_KD_TRACEN("START GAUSS ELIMINATION"); det = 1; for (k=0; k<dim; ++k) { // Total pivoting, without looking for the maximum entry for (i=k,j=k; j<cdim && U[i][j] == FT(0); (++i==dim)? ++j,i=k : 0 ) ; CGAL_KD_TRACEN("before swap [k="<<k<<"] :"); CGAL_KD_TRACEN(" found i="<<i<<" and j="<<j); CGAL_KD_TRACEV(U); if (j==cdim) break; if (i!=k) { CGAL_KD_TRACEN("swap row i="<<i<<" and k="<<k); U.swap_rows(i,k); L.swap_rows(i,k); std::swap(row_permutation[k], row_permutation[i]); sign = -sign; } if (j!=k) { CGAL_KD_TRACEN("swap column j="<<j<<" and k="<<k); U.swap_columns(j,k); std::swap(column_permutation[j],column_permutation[k]); sign = -sign; } CGAL_KD_TRACEN("after swap: "<<U); FT pivot = U[k][k]; CGAL_assertion(pivot != FT(0)); det *= pivot; for (i=k+1; i<dim; ++i) { FT temp = U[i][k] / pivot; for (j=0; j<dim; ++j) L[i][j] -= L[k][j] * temp; U[i][k] = FT(0); for (j=k+1; j<cdim; ++j) U[i][j] -= U[k][j] * temp; } } CGAL_KD_TRACEN("END GAUSS ELIMINATION"); CGAL_KD_TRACEV(L);CGAL_KD_TRACEV(U); // By invariant, L * M[q] = U and det(M) = det rank = k; if (rank == dim) { det *= FT(sign); } else { det = FT(0); // A vector c such that M[q] * c == 0 is obtained by L.row(dim-1) c = L.row(dim-1); }}template < class FT, class AL >boolLinear_algebraCd<FT,AL>::Triangular_system_solver(const Matrix &U, const Matrix& L, const Vector &b, int rank, Vector &x, FT &D){ // METHOD: solve system Ux=b, returning solution (x/D) // back substitution of x[rdim], x[rdim-1], etc. // depends on "free" variables x[rdim+1], etc. x[cdim] CGAL_kernel_assertion( U.row_dimension() == b.dimension()); CGAL_KD_TRACEN("Triangular_system_solver");CGAL_KD_TRACEV(U);CGAL_KD_TRACEV(b); D = FT(1); int i; for (i = rank; i < U.row_dimension(); ++i) if ( b[i] != FT(0) ) { x = L.row(i); return false; } x = Vector(U.column_dimension()); for (i = rank-1; i>=0; --i) { x[i] = b[i]; for (int j = i+1; j<rank; ++j) x[i] -= U[i][j] * x[j]; x[i] /= U[i][i]; } return true;}template < class FT, class AL >inline // in order to facilitate the optimization with unused variablesvoidLinear_algebraCd<FT,AL>::Triangular_left_inverse(const Matrix &U, Matrix &Uinv){ int i, j, k; CGAL_kernel_precondition(U.dimension() == transpose(Uinv.dimension())); CGAL_KD_TRACEN("system : " << U); for (i=U.row_dimension()-1; i>=0; --i) { Uinv[i][i] = FT(1)/U[i][i]; for (j=i+1; j<U.column_dimension(); ++j) { for (k=i; k<j; ++k) Uinv[i][j] -= Uinv[i][k] * U[k][j]; Uinv[i][j] /= U[j][j]; } } CGAL_KD_TRACEN("finally : " << Uinv);}template < class FT, class AL >boolLinear_algebraCd<FT,AL>::inverse(const Matrix &M, Matrix &I, FT &D, Vector &c){ CGAL_kernel_precondition(M.row_dimension()==M.column_dimension()); int rank; Matrix L,U; std::vector<int> rq, cq; Gaussian_elimination(M, L, U, rq, cq, D, rank, c); if (D == FT(0)) return false; // c holds the witness // Otherwise, compute the inverse of U Matrix Uinv(M.column_dimension(),M.row_dimension()); Triangular_left_inverse(U,Uinv); Uinv = Uinv * L; // Don't forget to permute the rows of M back CGAL_KD_TRACEN("inverse before permutation : "<<I); I = Matrix(M.column_dimension(),M.row_dimension()); typename Matrix::row_iterator rit, wit; for (rank=0; rank<I.column_dimension(); ++rank) for ( wit = I.row_begin(rank), rit = Uinv.row_begin(cq[rank]); rit != Uinv.row_end(cq[rank]); ++wit, ++rit ) *wit = *rit; /* does not work with MS: std::copy(Uinv.row_begin(cq[rank]), Uinv.row_end(cq[rank]), I.row_begin(rank)); */ D = FT(1); return true;}template < class FT, class AL >inlinetypename Linear_algebraCd<FT,AL>::MatrixLinear_algebraCd<FT,AL>::inverse(const Matrix &M, FT &D){ CGAL_kernel_precondition(M.row_dimension()==M.column_dimension()); Matrix I; Vector c; CGAL_kernel_assertion_code( bool result = ) inverse(M,I,D,c); CGAL_kernel_assertion( result ); return I;}template < class FT, class AL >typename Linear_algebraCd<FT,AL>::FTLinear_algebraCd<FT,AL>::determinant(const Matrix &M, Matrix &L, Matrix &U, std::vector<int> &q, Vector &c){ FT det; int rank; std::vector<int> cq; Gaussian_elimination(M, L, U, q, cq, det, rank, c); return det;}template < class FT, class AL >inlinetypename Linear_algebraCd<FT,AL>::FTLinear_algebraCd<FT,AL>::determinant(const Matrix &M){ Matrix L,U; Vector c; std::vector<int> q; return determinant(M,L,U,q,c);}template < class FT, class AL >inlineSignLinear_algebraCd<FT,AL>::sign_of_determinant(const Matrix &M){ return CGAL_NTS sign(determinant(M)); }template < class FT, class AL >boolLinear_algebraCd<FT,AL>::verify_determinant(const Matrix & /*M*/, const FT & /*D*/, const Matrix & /*L*/, const Matrix & /*U*/, const std::vector<int> & /*q*/, const Vector & /*c*/){ // TODO: verify_determinant return true;}template < class FT, class AL >boolLinear_algebraCd<FT,AL>::linear_solver(const Matrix &M, const Vector &b, Vector &x, FT &D, Vector &c){ CGAL_kernel_precondition( b.dimension() == M.row_dimension() ); Matrix L,U; int rank; std::vector<int> dummy, var; CGAL_KD_TRACEN("linear_solver");CGAL_KD_TRACEV(M); CGAL_KD_TRACEV(b); Gaussian_elimination(M, L, U, dummy, var, D, rank, c); // Compute a solution by solving triangular system // Since LM=U, and x is a solution of Mx=b, then Ux=Lb // Temporary store the solution in c if ( !Triangular_system_solver(U, L, L*b, rank, c, D) ) return false; // Don't forget to permute the rows of M back x = Vector(M.column_dimension()); for (int i=0; i<U.column_dimension(); ++i) x[ var[i] ] = c[i];#ifdef CGAL_LA_SELFTEST CGAL_assertion( (M*x) == b );#endif return true;}template < class FT, class AL >boolLinear_algebraCd<FT,AL>::linear_solver(const Matrix &M, const Vector &b, Vector &x, FT &D, Matrix &spanning_vectors, Vector &c){ CGAL_kernel_precondition( b.dimension() == M.row_dimension() ); Matrix L,U; int rank; std::vector<int> dummy, var; CGAL_KD_TRACEN("linear_solver");CGAL_KD_TRACEV(M); CGAL_KD_TRACEV(b); Gaussian_elimination(M, L, U, dummy, var, D, rank, c); // Compute a solution by solving triangular system // Since LM=U, and x is a solution of Mx=b, then Ux=Lb // Temporary store the solution in c if ( !Triangular_system_solver(U, L, L*b, rank, c, D) ) return false; // Don't forget to permute the rows of M back: x = Vector(M.column_dimension()); for (int i=0; i<U.column_dimension(); ++i) x[ var[i] ] = c[i];#ifdef CGAL_LA_SELFTEST CGAL_assertion( (M*x) == b );#endif int defect = M.column_dimension() - rank; spanning_vectors = Matrix(M.column_dimension(),defect); if (defect > 0) { for(int l=0; l < defect; ++l) { spanning_vectors(var[rank + l],l)=FT(1); for(int i = rank - 1; i >= 0 ; i--) { FT h = - U(i,rank+l); for (int j= i + 1; j<rank; ++j) h -= U(i,j)*spanning_vectors(var[j],l); spanning_vectors(var[i],l)= h / U(i,i); } CGAL_KD_TRACEV(spanning_vectors.column(l));#ifdef CGAL_LA_SELFTEST CGAL_assertion( (M*spanning_vectors.column(l)).is_zero() );#endif } } return true;}template < class FT, class AL >boolLinear_algebraCd<FT,AL>::linear_solver(const Matrix &M, const Vector &b, Vector &x, FT &D){ Vector c; return linear_solver(M, b, x, D, c);}template < class FT, class AL >boolLinear_algebraCd<FT,AL>::is_solvable(const Matrix &M, const Vector &b){ Vector x; FT D; return linear_solver(M, b, x, D);}template < class FT, class AL >intLinear_algebraCd<FT,AL>::homogeneous_linear_solver(const Matrix &M, Matrix &spanning_vectors){ Matrix L,U; Vector c, b(M.row_dimension()); std::vector<int> dummy,var; FT D; int rank,i; Gaussian_elimination(M, L, U, dummy, var, D, rank, c);#ifdef CGAL_LA_SELFTEST Vector x; Triangular_system_solver(U, L, b, rank, c, D); CGAL_KD_TRACEV(M);CGAL_KD_TRACEV(U);CGAL_KD_TRACEV(b);CGAL_KD_TRACEV(rank);CGAL_KD_TRACEV(c);CGAL_KD_TRACEV(D); x = Vector(M.column_dimension()); for (i=0; i<U.row_dimension(); ++i) x[ var[i] ] = c[i]; CGAL_assertion( (M*x).is_zero() );#endif int defect = M.column_dimension() - rank; spanning_vectors = Matrix(M.column_dimension(),defect); if (defect > 0) { /* In the $l$-th spanning vector, $0 \le l < |defect|$ we set variable |var[rank + l]| to $1 = |denom|/|denom|$ and then the dependent variables as dictated by the $|rank| + l$ - th column of |C|.*/ for(int l=0; l < defect; ++l) { spanning_vectors(var[rank + l],l)=FT(1); for(i = rank - 1; i >= 0 ; i--) { FT h = - U(i,rank+l); for (int j= i + 1; j<rank; ++j) h -= U(i,j)*spanning_vectors(var[j],l); spanning_vectors(var[i],l)= h / U(i,i); } CGAL_KD_TRACEV(spanning_vectors.column(l));#ifdef CGAL_LA_SELFTEST /* we check whether the $l$ - th spanning vector is a solution of the homogeneous system */ if ( !(M*spanning_vectors.column(l)).is_zero() ) std::cerr << M*spanning_vectors.column(l) << std::endl; CGAL_assertion( (M*spanning_vectors.column(l)).is_zero() );#endif } } return defect;}template < class FT, class AL >boolLinear_algebraCd<FT,AL>::homogeneous_linear_solver(const Matrix &M, Vector &x){ x = Vector(M.row_dimension()); Matrix spanning_vectors; int defect = homogeneous_linear_solver(M,spanning_vectors); if (defect == 0) return false; /* return first column of |spanning_vectors| */ for (int i = 0; i < spanning_vectors.row_dimension(); i++) x[i] = spanning_vectors(i,0); return true; }template < class FT, class AL >intLinear_algebraCd<FT,AL>::independent_columns(const Matrix &M, std::vector<int> &q){ int rank; std::vector<int> dummy; Matrix Dummy1,Dummy2; Vector Dummy3; FT null(0); Gaussian_elimination(M, Dummy1, Dummy2, dummy, q, null, rank, Dummy3); return rank;}template < class FT, class AL >intLinear_algebraCd<FT,AL>::rank(const Matrix &M){ std::vector<int> q; return independent_columns(M,q);}CGAL_END_NAMESPACE#endif // CGAL_LINEAR_ALGEBRACD_C
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -