📄 sqrt_extension_2.h
字号:
// Copyright (c) 2003,2004,2005,2006 INRIA Sophia-Antipolis (France) and// Notre Dame University (U.S.A.). All rights reserved.//// This file is part of CGAL (www.cgal.org); you may redistribute it under// the terms of the Q Public License version 1.0.// See the file LICENSE.QPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Segment_Delaunay_graph_2/include/CGAL/Segment_Delaunay_graph_2/Sqrt_extension_2.h $// $Id: Sqrt_extension_2.h 35201 2006-11-16 12:42:59Z hemmer $// //// Author(s) : Menelaos Karavelas <mkaravel@cse.nd.edu>#ifndef CGAL_SEGMENT_DELAUNAY_GRAPH_2_SQRT_EXTENSION_2_H#define CGAL_SEGMENT_DELAUNAY_GRAPH_2_SQRT_EXTENSION_2_H#include <CGAL/Segment_Delaunay_graph_2/Sqrt_extension_1.h>CGAL_BEGIN_NAMESPACEtemplate<class NT>class Sqrt_extension_2{private: typedef Sqrt_extension_2<NT> Self; typedef Sqrt_extension_1<NT> Sqrt_1; NT a0_, a1_, a2_, a3_; NT A_, B_;public: typedef NT FT; typedef NT RT; public: Sqrt_extension_2() : a0_(0), a1_(0), a2_(0), a3_(0), A_(0), B_(0) {} Sqrt_extension_2(int i) : a0_(i), a1_(0), a2_(0), a3_(0), A_(0), B_(0) {} Sqrt_extension_2(const NT& a) : a0_(a), a1_(0), a2_(0), a3_(0), A_(0), B_(0) {} Sqrt_extension_2(const NT& a0, const NT& a1, const NT& a2, const NT& a3, const NT& A, const NT& B) : a0_(a0), a1_(a1), a2_(a2), a3_(a3), A_(A), B_(B) { CGAL_exactness_precondition( !(CGAL::is_negative(A_)) ); CGAL_exactness_precondition( !(CGAL::is_negative(B_)) ); } Sqrt_extension_2(const Sqrt_extension_2<NT>& other) : a0_(other.a0_), a1_(other.a1_), a2_(other.a2_), a3_(other.a3_), A_(other.A_), B_(other.B_) {} NT a() const { return a0_; } NT b() const { return a1_; } NT c() const { return a2_; } NT d() const { return a3_; } NT e() const { return A_; } NT f() const { return B_; } Self operator*(const Self& b) const { CGAL_exactness_precondition( CGAL::compare(A_, b.A_) == EQUAL ); CGAL_exactness_precondition( CGAL::compare(B_, b.B_) == EQUAL ); NT a0 = a0_ * b.a0_ + a1_ * b.a1_ * A_ + a2_ * b.a2_ * B_ + a3_ * b.a3_ * A_ * B_; NT a1 = a0_ * b.a1_ + a1_ * b.a0_ + (a2_ * b.a3_ + a3_ * b.a2_) * B_; NT a2 = a0_ * b.a2_ + a2_ * b.a0_ + (a1_ * b.a3_ + a3_ * b.a1_) * A_; NT a3 = a0_ * b.a3_ + a3_ * b.a0_ + a1_ * b.a2_ + a2_ * b.a1_; return Self(a0, a1, a2, a3, A_, B_); } Self operator-() const { return Self(-a0_, -a1_, -a2_, -a3_, A_, B_); } Self operator+() const { return (*this); } Self square() const { NT a0 = CGAL::square(a0_) + CGAL::square(a1_) * A_ + CGAL::square(a2_) * B_ + CGAL::square(a3_) * A_ * B_; NT a1_half = a0_ * a1_ + a2_ * a3_ * B_; NT a2_half = a0_ * a2_ + a1_ * a3_ * A_; NT a3_half = a0_ * a3_ + a1_ * a2_; NT a1 = a1_half + a1_half; NT a2 = a2_half + a2_half; NT a3 = a3_half + a3_half; return Self(a0, a1, a2, a3, A_, B_); } Sign sign() const { Sqrt_1 x(a0_, a1_, A_); Sqrt_1 y(a2_, a3_, A_); Sign s_x = CGAL_NTS sign(x); Sign s_y = CGAL_NTS sign(y); Sign s_B = CGAL_NTS sign(B_); if ( s_B == ZERO ) { return s_x; } else if ( s_x == s_y ) { return s_x; } else if ( s_x == ZERO ) { return s_y; } else if ( s_y == ZERO ) { return s_x; } else { Sqrt_1 Q = CGAL::square(x) - CGAL::square(y) * B_; return Sign(s_x * CGAL_NTS sign(Q)); } } double to_double() const { // THIS MUST BE CHECK WITH SYLVAIN FOR CORRECTNESS double a0d = CGAL::to_double(a0_); double a1d = CGAL::to_double(a1_); double a2d = CGAL::to_double(a2_); double a3d = CGAL::to_double(a3_); double Ad = CGAL::to_double(A_); double Bd = CGAL::to_double(B_); return (a0d + a1d * CGAL::sqrt(Ad) + a2d * CGAL::sqrt(Bd) + a3d * CGAL::sqrt(Ad * Bd)); }};// operator *template<class NT>inlineSqrt_extension_2<NT>operator*(const Sqrt_extension_2<NT>& x, const NT& n){ return Sqrt_extension_2<NT>(x.a() * n, x.b() * n, x.c() * n, x.d() * n, x.e(), x.f());}template<class NT>inlineSqrt_extension_2<NT>operator*(const NT& n, const Sqrt_extension_2<NT>& x){ return (x * n);}// operator +template<class NT>inlineSqrt_extension_2<NT>operator+(const Sqrt_extension_2<NT>& x, const NT& n){ return Sqrt_extension_2<NT>(x.a() + n, x.b(), x.c(), x.d(), x.e(), x.f());}template<class NT>inlineSqrt_extension_2<NT>operator+(const NT& n, const Sqrt_extension_2<NT>& x){ return (x + n);}template<class NT>inlineSqrt_extension_2<NT>operator+(const Sqrt_extension_2<NT>& x, const Sqrt_extension_2<NT>& y){ CGAL_exactness_precondition( CGAL::compare(x.e(), y.e()) == EQUAL ); CGAL_exactness_precondition( CGAL::compare(x.f(), y.f()) == EQUAL ); return Sqrt_extension_2<NT>(x.a() + y.a(), x.b() + y.b(), x.c() + y.c(), x.d() + y.d(), x.e(), x.f());}// operator -template<class NT>inlineSqrt_extension_2<NT>operator-(const Sqrt_extension_2<NT>& x, const NT& n){ return x + (-n);}template<class NT>inlineSqrt_extension_2<NT>operator-(const NT& n, const Sqrt_extension_2<NT>& x){ return -(x - n);}template<class NT>inlineSqrt_extension_2<NT>operator-(const Sqrt_extension_2<NT>& x, const Sqrt_extension_2<NT>& y){ return (x + (-y));}//===================================================================template <class NT> struct Algebraic_structure_traits<Sqrt_extension_2<NT> > :public Algebraic_structure_traits_base<Sqrt_extension_2<NT>,CGAL::Integral_domain_without_division_tag>{private: typedef Algebraic_structure_traits<NT> AST_NT;public: typedef Sqrt_extension_2<NT> Algebraic_structure; typedef typename AST_NT::Is_exact Is_exact;};template<class NT>struct Real_embeddable_traits<Sqrt_extension_2<NT> >{private: typedef Real_embeddable_traits<NT> RET_NT;public: typedef Sqrt_extension_2<NT> Real_embeddable; class Abs : public Unary_function< Real_embeddable, Real_embeddable >{ public: Real_embeddable operator()(const Real_embeddable& x) const { return (x>=0)?x:-x; } }; class Sign : public Unary_function< Real_embeddable, CGAL::Sign >{ public: CGAL::Sign operator()(const Real_embeddable& x) const { return x.sign(); } }; class Compare : public Binary_function< Real_embeddable, Real_embeddable, CGAL::Comparison_result >{ public: CGAL::Comparison_result operator()( const Real_embeddable& x, const Real_embeddable& y) const { CGAL_exactness_precondition( CGAL::compare(x.e(), y.e()) == EQUAL ); CGAL_exactness_precondition( CGAL::compare(x.f(), y.f()) == EQUAL ); return (x - y).sign(); } }; class To_double : public Unary_function< Real_embeddable, double >{ public: double operator()(const Real_embeddable& x) const { return x.to_double(); } }; class To_interval : public Unary_function< Real_embeddable, std::pair< double, double > >{ public: std::pair<double,double> operator()(const Real_embeddable& x) const { return x.to_interval(); } }; };// operator <<template<class Stream, class NT>inlineStream&operator<<(Stream& os, const Sqrt_extension_2<NT>& x){ os << "(" << x.a() << ")+(" << x.b() << ") sqrt{" << x.e() << "}"; os << "+(" << x.c() << ") sqrt{" << x.f() << "}"; os << "+(" << x.d() << ") sqrt{(" << x.e() << ") (" << x.f() << ")}"; return os;}CGAL_END_NAMESPACE#endif // CGAL_SEGMENT_DELAUNAY_GRAPH_2_SQRT_EXTENSION_2_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -