⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vertex_conflict_c2.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2003,2004,2005,2006  INRIA Sophia-Antipolis (France) and// Notre Dame University (U.S.A.).  All rights reserved.//// This file is part of CGAL (www.cgal.org); you may redistribute it under// the terms of the Q Public License version 1.0.// See the file LICENSE.QPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Segment_Delaunay_graph_2/include/CGAL/Segment_Delaunay_graph_2/Vertex_conflict_C2.h $// $Id: Vertex_conflict_C2.h 32872 2006-08-01 12:38:07Z mkaravel $// //// Author(s)     : Menelaos Karavelas <mkaravel@cse.nd.edu>#ifndef CGAL_SEGMENT_DELAUNAY_GRAPH_2_VERTEX_CONFLICT_C2_H#define CGAL_SEGMENT_DELAUNAY_GRAPH_2_VERTEX_CONFLICT_C2_H#include <CGAL/Segment_Delaunay_graph_2/Voronoi_vertex_C2.h>#include <CGAL/Segment_Delaunay_graph_2/Are_same_points_C2.h>#include <CGAL/Segment_Delaunay_graph_2/Are_same_segments_C2.h>CGAL_BEGIN_NAMESPACECGAL_SEGMENT_DELAUNAY_GRAPH_2_BEGIN_NAMESPACE//---------------------------------------------------------------------template<class K, class Method_tag>class Vertex_conflict_C2{private:  typedef typename K::Point_2                Point_2;  typedef typename K::Segment_2              Segment_2;  typedef typename K::Site_2                 Site_2;  typedef typename K::FT                     FT;  typedef typename K::RT                     RT;  typedef typename K::Orientation            Orientation;  typedef typename K::Sign                   Sign;  typedef Voronoi_vertex_C2<K,Method_tag>    Voronoi_vertex_2;  typedef Are_same_points_C2<K>              Are_same_points_2;  typedef Are_same_segments_C2<K>            Are_same_segments_2;  typedef typename K::Intersections_tag      ITag;private:  Are_same_points_2    same_points;  Are_same_segments_2  same_segments;  bool is_on_common_support(const Site_2& s1, const Site_2& s2,			    const Point_2& p) const  {    CGAL_precondition( !s1.is_input() && !s2.is_input() );    if (  same_segments(s1.supporting_site(0),			s2.supporting_site(0)) ||	  same_segments(s1.supporting_site(0),			s2.supporting_site(1))  ) {      Site_2 support = s1.supporting_site(0);      Site_2 tp = Site_2::construct_site_2(p);      return (  same_points(support.source_site(), tp) ||		same_points(support.target_site(), tp)  );    } else if (  same_segments(s1.supporting_site(1),			       s2.supporting_site(1)) ||		 same_segments(s1.supporting_site(1),			       s2.supporting_site(0))  ) {      Site_2 support = s1.supporting_site(1);      Site_2 tp = Site_2::construct_site_2(p);      return (  same_points(support.source_site(), tp) ||		same_points(support.target_site(), tp)  );          }    return false;  }  bool have_common_support(const Site_2& p, const Site_2& q) const  {    CGAL_precondition( !p.is_input() && !q.is_input() );    return      same_segments(p.supporting_site(0), q.supporting_site(0)) ||      same_segments(p.supporting_site(0), q.supporting_site(1)) ||      same_segments(p.supporting_site(1), q.supporting_site(1)) ||      same_segments(p.supporting_site(1), q.supporting_site(0));  }  bool have_common_support(const Site_2& s, const Point_2& p1,			   const Point_2& p2) const  {    CGAL_precondition( !s.is_input() );    Site_2 t = Site_2::construct_site_2(p1, p2);    return ( same_segments(s.supporting_site(0), t) ||	     same_segments(s.supporting_site(1), t) );  }private:  Sign incircle_ppp(const Site_2& p, const Site_2& q,		    const Site_2& t, const Tag_false&) const  {    Point_2 pp = p.point(), qp = q.point(), tp = t.point();    // MK::ERROR: here I should call a kernel object, not a    // function...; actually here (and everywhere in this class)    // use the orientation predicate for sites; it does some    // geometric filtering...    Orientation o = orientation(pp, qp, tp);    if ( o != COLLINEAR ) {      return (o == LEFT_TURN) ? POSITIVE : NEGATIVE;    }    // MK::ERROR: change the following code to use the compare_x_2    // and compare_y_2 stuff...    RT dtpx = pp.x() - tp.x();    RT dtpy = pp.y() - tp.y();    RT dtqx = qp.x() - tp.x();    RT minus_dtqy = -qp.y() + tp.y();        Sign s = sign_of_determinant2x2(dtpx, dtpy, minus_dtqy, dtqx);    CGAL_assertion( s != ZERO );    return s;  }  Sign incircle_ppp(const Site_2& p, const Site_2& q,		    const Site_2& t, const Tag_true&) const  {    Orientation o = COLLINEAR; // the initialization was done in                               // order a compiler warning    // do some geometric filtering...    bool p_exact = p.is_input();    bool q_exact = q.is_input();    bool t_exact = t.is_input();    bool filtered = false;    // the following if-statement does the gometric filtering...    // maybe it is not so important since this will only be    // activated if a lot of intersection points appear on the    // convex hull    if ( !p_exact || !q_exact || !t_exact ) {      if ( !p_exact && !q_exact && !t_exact ) {	if ( have_common_support(p, q) &&	     have_common_support(q, t) ) {	  o = COLLINEAR;	  filtered = true;	}      } else if ( !p_exact && !q_exact && t_exact ) {	if ( is_on_common_support(p, q, t.point()) ) {	  o = COLLINEAR;	  filtered = true;	}      } else if ( !p_exact && q_exact && !t_exact ) {	if ( is_on_common_support(p, t, q.point()) ) {	  o = COLLINEAR;	  filtered = true;	}      } else if ( p_exact && !q_exact && !t_exact ) {	if ( is_on_common_support(t, q, p.point()) ) {	  o = COLLINEAR;	  filtered = true;	}      } else if ( !p_exact && q_exact && t_exact ) {	if ( have_common_support(p, q.point(), t.point()) ) {	  o = COLLINEAR;	  filtered = true;	}      } else if ( p_exact && !q_exact && t_exact ) {	if ( have_common_support(q, p.point(), t.point()) ) {	  o = COLLINEAR;	  filtered = true;	}      } else if ( p_exact && q_exact && !t_exact ) {	if ( have_common_support(t, p.point(), q.point()) ) {	  o = COLLINEAR;	  filtered = true;	}      }    }    Point_2 pp = p.point(), qp = q.point(), tp = t.point();    if ( !filtered ) {      // MK::ERROR: here I should call a kernel object, not a      // function...; actually here (and everywhere in this class)      // use the orientation predicate for sites; it does some      // geometric filtering...      o = orientation(pp, qp, tp);    }    if ( o != COLLINEAR ) {      return (o == LEFT_TURN) ? POSITIVE : NEGATIVE;    }    // MK::ERROR: change the following code to use the compare_x_2    // and compare_y_2 stuff...    RT dtpx = pp.x() - tp.x();    RT dtpy = pp.y() - tp.y();    RT dtqx = qp.x() - tp.x();    RT minus_dtqy = -qp.y() + tp.y();        Sign s = sign_of_determinant2x2(dtpx, dtpy, minus_dtqy, dtqx);        CGAL_assertion( s != ZERO );    return s;  }  Sign incircle_p(const Site_2& p, const Site_2& q,		  const Site_2& t) const  {    CGAL_precondition( t.is_point() );    if ( p.is_point() && q.is_point() ) {#if 1      return incircle_ppp(p, q, t, ITag());#else      Orientation o = COLLINEAR; // the initialization was done in                                 // order a compiler warning      // do some geometric filtering...      bool p_exact = p.is_input();      bool q_exact = q.is_input();      bool t_exact = t.is_input();      bool filtered = false;      // the following if-statement does the gometric filtering...      // maybe it is not so important since this will only be      // activated if a lot of intersection points appear on the      // convex hull      if ( !p_exact || !q_exact || !t_exact ) {	if ( !p_exact && !q_exact && !t_exact ) {	  if ( have_common_support(p, q) &&	       have_common_support(q, t) ) {	    o = COLLINEAR;	    filtered = true;	  }	} else if ( !p_exact && !q_exact && t_exact ) {	  if ( is_on_common_support(p, q, t.point()) ) {	    o = COLLINEAR;	    filtered = true;	  }	} else if ( !p_exact && q_exact && !t_exact ) {	  if ( is_on_common_support(p, t, q.point()) ) {	    o = COLLINEAR;	    filtered = true;	  }	} else if ( p_exact && !q_exact && !t_exact ) {	  if ( is_on_common_support(t, q, p.point()) ) {	    o = COLLINEAR;	    filtered = true;	  }	} else if ( !p_exact && q_exact && t_exact ) {	  if ( have_common_support(p, q.point(), t.point()) ) {	    o = COLLINEAR;	    filtered = true;	  }	} else if ( p_exact && !q_exact && t_exact ) {	  if ( have_common_support(q, p.point(), t.point()) ) {	    o = COLLINEAR;	    filtered = true;	  }	} else if ( p_exact && q_exact && !t_exact ) {	  if ( have_common_support(t, p.point(), q.point()) ) {	    o = COLLINEAR;	    filtered = true;	  }	}      }      Point_2 pp = p.point(), qp = q.point(), tp = t.point();      if ( !filtered ) {	// MK::ERROR: here I should call a kernel object, not a	// function...; actually here (and everywhere in this class)	// use the orientation predicate for sites; it does some	// geometric filtering...	o = orientation(pp, qp, tp);      }      if ( o != COLLINEAR ) {	return (o == LEFT_TURN) ? POSITIVE : NEGATIVE;      }      // MK::ERROR: change the following code to use the compare_x_2      // and compare_y_2 stuff...      RT dtpx = pp.x() - tp.x();      RT dtpy = pp.y() - tp.y();      RT dtqx = qp.x() - tp.x();      RT minus_dtqy = -qp.y() + tp.y();            Sign s = sign_of_determinant2x2(dtpx, dtpy, minus_dtqy, dtqx);      CGAL_assertion( s != ZERO );      return s;#endif    }    CGAL_assertion( p.is_point() || q.is_point() );    Orientation o;    if ( p.is_point() && q.is_segment() ) {      Point_2 pq = same_points(p, q.source_site()) ? q.target() : q.source();      o = orientation(p.point(), pq, t.point());    } else { // p is a segment and q is a point      Point_2 pp = same_points(q, p.source_site()) ? p.target() : p.source();      o = orientation(pp, q.point(), t.point());    }    return ( o == RIGHT_TURN ) ? NEGATIVE : POSITIVE;  }  //-----------------------------------------------------------------------  Sign incircle_pps(const Site_2& p, const Site_2& q,		    const Site_2& t) const  {    CGAL_precondition( p.is_point() && q.is_point() );    bool is_p_tsrc = same_points(p, t.source_site());    bool is_p_ttrg = same_points(p, t.target_site());    bool is_q_tsrc = same_points(q, t.source_site());    bool is_q_ttrg = same_points(q, t.target_site());    bool is_p_on_t = is_p_tsrc || is_p_ttrg;    bool is_q_on_t = is_q_tsrc || is_q_ttrg;    if ( is_p_on_t && is_q_on_t ) {	// if t is the segment joining p and q then t must be a vertex	// on the convex hull	return NEGATIVE;    } else if ( is_p_on_t ) {      // p is an endpoint of t      // in this case the p,q,oo vertex is destroyed only if the      // other endpoint of t is beyond      Point_2 pt = is_p_tsrc ? t.target() : t.source();      Orientation o = orientation(p.point(), q.point(), pt);      return (o == RIGHT_TURN) ? NEGATIVE : POSITIVE;    } else if ( is_q_on_t ) {      Point_2 pt = is_q_tsrc ? t.target() : t.source();      Orientation o = orientation(p.point(), q.point(), pt);      return (o == RIGHT_TURN) ? NEGATIVE : POSITIVE;    } else {      // maybe here I should immediately return POSITIVE;      // since we insert endpoints of segments first, p and q cannot      // be consecutive points on the convex hull if one of the      // endpoints of t is to the right of the line pq.      Point_2 pp = p.point(), qq = q.point();      Orientation o1 = orientation(pp, qq, t.source());      Orientation o2 = orientation(pp, qq, t.target());      if ( o1 == RIGHT_TURN || o2 == RIGHT_TURN ) {	return NEGATIVE;      }      return POSITIVE;    }  }  Sign incircle_sps(const Site_2& p, const Site_2& q,		    const Site_2& t) const  {    CGAL_precondition( p.is_segment() && q.is_point() );    bool is_q_tsrc = same_points(q, t.source_site());    bool is_q_ttrg = same_points(q, t.target_site());    bool is_q_on_t = is_q_tsrc || is_q_ttrg;    if ( is_q_on_t ) {      Point_2 pp = same_points(q, p.source_site()) ? p.target() : p.source();      Point_2 pt = is_q_tsrc ? t.target() : t.source();      Orientation o = orientation(pp, q.point(), pt);      return (o == RIGHT_TURN) ? NEGATIVE : POSITIVE;    } else {      return POSITIVE;    }  }  Sign incircle_pss(const Site_2& p, const Site_2& q,		    const Site_2& t) const  {    CGAL_precondition( p.is_point() && q.is_segment() );    bool is_p_tsrc = same_points(p, t.source_site());    bool is_p_ttrg = same_points(p, t.target_site());    bool is_p_on_t = is_p_tsrc || is_p_ttrg;    if ( is_p_on_t ) {      Point_2 pq = same_points(p, q.source_site()) ? q.target() : q.source();      Point_2 pt = is_p_tsrc ? t.target() : t.source();      Orientation o = orientation(p.point(), pq, pt);      return (o == RIGHT_TURN) ? NEGATIVE : POSITIVE;    } else {      // if p is not an endpoint of t, then either p and q should      // not be on the convex hull or t does not affect the vertex      // of p and q.      return POSITIVE;    }  }  Sign incircle_s(const Site_2& p, const Site_2& q,		  const Site_2& t) const  {    CGAL_precondition( t.is_segment() );    if ( p.is_point() && q.is_point() ) {      return incircle_pps(p, q, t);    } else if ( p.is_point() && q.is_segment() ) {      return incircle_pss(p, q, t);    } else { // p is a segment and q is a point      return incircle_sps(p, q, t);    }  }public:  typedef Site_2      argument_type;  typedef Sign        result_type;  struct Arity {};  Sign operator()(const Site_2& p, const Site_2& q,		  const Site_2& r, const Site_2& t) const  {    Voronoi_vertex_2 v(p, q, r);    return v.incircle(t);  }    Sign operator()(const Site_2& p, const Site_2& q,		  const Site_2& t) const  {    CGAL_assertion( !(p.is_segment() && q.is_segment()) );    if ( p.is_point() && q.is_segment() ) {      // p must be an endpoint of q      CGAL_assertion( same_points(p, q.source_site()) ||		      same_points(p, q.target_site()) );    } else if ( p.is_segment() && q.is_point() ) {      // q must be an endpoint of p      CGAL_assertion( same_points(p.source_site(), q) ||		      same_points(p.target_site(), q) );    }    if ( t.is_point() ) {      //      return incircle_p(p, q, t);      return incircle_p(q, p, t);    }    // MK::ERROR: do geometric filtering when orientation is called.    //    return incircle_s(p, q, t);    return incircle_s(q, p, t);  }};//---------------------------------------------------------------------CGAL_SEGMENT_DELAUNAY_GRAPH_2_END_NAMESPACECGAL_END_NAMESPACE#endif // CGAL_SEGMENT_DELAUNAY_GRAPH_2_VERTEX_CONFLICT_C2_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -