📄 vertex_conflict_c2.h
字号:
// Copyright (c) 2003,2004,2005,2006 INRIA Sophia-Antipolis (France) and// Notre Dame University (U.S.A.). All rights reserved.//// This file is part of CGAL (www.cgal.org); you may redistribute it under// the terms of the Q Public License version 1.0.// See the file LICENSE.QPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Segment_Delaunay_graph_2/include/CGAL/Segment_Delaunay_graph_2/Vertex_conflict_C2.h $// $Id: Vertex_conflict_C2.h 32872 2006-08-01 12:38:07Z mkaravel $// //// Author(s) : Menelaos Karavelas <mkaravel@cse.nd.edu>#ifndef CGAL_SEGMENT_DELAUNAY_GRAPH_2_VERTEX_CONFLICT_C2_H#define CGAL_SEGMENT_DELAUNAY_GRAPH_2_VERTEX_CONFLICT_C2_H#include <CGAL/Segment_Delaunay_graph_2/Voronoi_vertex_C2.h>#include <CGAL/Segment_Delaunay_graph_2/Are_same_points_C2.h>#include <CGAL/Segment_Delaunay_graph_2/Are_same_segments_C2.h>CGAL_BEGIN_NAMESPACECGAL_SEGMENT_DELAUNAY_GRAPH_2_BEGIN_NAMESPACE//---------------------------------------------------------------------template<class K, class Method_tag>class Vertex_conflict_C2{private: typedef typename K::Point_2 Point_2; typedef typename K::Segment_2 Segment_2; typedef typename K::Site_2 Site_2; typedef typename K::FT FT; typedef typename K::RT RT; typedef typename K::Orientation Orientation; typedef typename K::Sign Sign; typedef Voronoi_vertex_C2<K,Method_tag> Voronoi_vertex_2; typedef Are_same_points_C2<K> Are_same_points_2; typedef Are_same_segments_C2<K> Are_same_segments_2; typedef typename K::Intersections_tag ITag;private: Are_same_points_2 same_points; Are_same_segments_2 same_segments; bool is_on_common_support(const Site_2& s1, const Site_2& s2, const Point_2& p) const { CGAL_precondition( !s1.is_input() && !s2.is_input() ); if ( same_segments(s1.supporting_site(0), s2.supporting_site(0)) || same_segments(s1.supporting_site(0), s2.supporting_site(1)) ) { Site_2 support = s1.supporting_site(0); Site_2 tp = Site_2::construct_site_2(p); return ( same_points(support.source_site(), tp) || same_points(support.target_site(), tp) ); } else if ( same_segments(s1.supporting_site(1), s2.supporting_site(1)) || same_segments(s1.supporting_site(1), s2.supporting_site(0)) ) { Site_2 support = s1.supporting_site(1); Site_2 tp = Site_2::construct_site_2(p); return ( same_points(support.source_site(), tp) || same_points(support.target_site(), tp) ); } return false; } bool have_common_support(const Site_2& p, const Site_2& q) const { CGAL_precondition( !p.is_input() && !q.is_input() ); return same_segments(p.supporting_site(0), q.supporting_site(0)) || same_segments(p.supporting_site(0), q.supporting_site(1)) || same_segments(p.supporting_site(1), q.supporting_site(1)) || same_segments(p.supporting_site(1), q.supporting_site(0)); } bool have_common_support(const Site_2& s, const Point_2& p1, const Point_2& p2) const { CGAL_precondition( !s.is_input() ); Site_2 t = Site_2::construct_site_2(p1, p2); return ( same_segments(s.supporting_site(0), t) || same_segments(s.supporting_site(1), t) ); }private: Sign incircle_ppp(const Site_2& p, const Site_2& q, const Site_2& t, const Tag_false&) const { Point_2 pp = p.point(), qp = q.point(), tp = t.point(); // MK::ERROR: here I should call a kernel object, not a // function...; actually here (and everywhere in this class) // use the orientation predicate for sites; it does some // geometric filtering... Orientation o = orientation(pp, qp, tp); if ( o != COLLINEAR ) { return (o == LEFT_TURN) ? POSITIVE : NEGATIVE; } // MK::ERROR: change the following code to use the compare_x_2 // and compare_y_2 stuff... RT dtpx = pp.x() - tp.x(); RT dtpy = pp.y() - tp.y(); RT dtqx = qp.x() - tp.x(); RT minus_dtqy = -qp.y() + tp.y(); Sign s = sign_of_determinant2x2(dtpx, dtpy, minus_dtqy, dtqx); CGAL_assertion( s != ZERO ); return s; } Sign incircle_ppp(const Site_2& p, const Site_2& q, const Site_2& t, const Tag_true&) const { Orientation o = COLLINEAR; // the initialization was done in // order a compiler warning // do some geometric filtering... bool p_exact = p.is_input(); bool q_exact = q.is_input(); bool t_exact = t.is_input(); bool filtered = false; // the following if-statement does the gometric filtering... // maybe it is not so important since this will only be // activated if a lot of intersection points appear on the // convex hull if ( !p_exact || !q_exact || !t_exact ) { if ( !p_exact && !q_exact && !t_exact ) { if ( have_common_support(p, q) && have_common_support(q, t) ) { o = COLLINEAR; filtered = true; } } else if ( !p_exact && !q_exact && t_exact ) { if ( is_on_common_support(p, q, t.point()) ) { o = COLLINEAR; filtered = true; } } else if ( !p_exact && q_exact && !t_exact ) { if ( is_on_common_support(p, t, q.point()) ) { o = COLLINEAR; filtered = true; } } else if ( p_exact && !q_exact && !t_exact ) { if ( is_on_common_support(t, q, p.point()) ) { o = COLLINEAR; filtered = true; } } else if ( !p_exact && q_exact && t_exact ) { if ( have_common_support(p, q.point(), t.point()) ) { o = COLLINEAR; filtered = true; } } else if ( p_exact && !q_exact && t_exact ) { if ( have_common_support(q, p.point(), t.point()) ) { o = COLLINEAR; filtered = true; } } else if ( p_exact && q_exact && !t_exact ) { if ( have_common_support(t, p.point(), q.point()) ) { o = COLLINEAR; filtered = true; } } } Point_2 pp = p.point(), qp = q.point(), tp = t.point(); if ( !filtered ) { // MK::ERROR: here I should call a kernel object, not a // function...; actually here (and everywhere in this class) // use the orientation predicate for sites; it does some // geometric filtering... o = orientation(pp, qp, tp); } if ( o != COLLINEAR ) { return (o == LEFT_TURN) ? POSITIVE : NEGATIVE; } // MK::ERROR: change the following code to use the compare_x_2 // and compare_y_2 stuff... RT dtpx = pp.x() - tp.x(); RT dtpy = pp.y() - tp.y(); RT dtqx = qp.x() - tp.x(); RT minus_dtqy = -qp.y() + tp.y(); Sign s = sign_of_determinant2x2(dtpx, dtpy, minus_dtqy, dtqx); CGAL_assertion( s != ZERO ); return s; } Sign incircle_p(const Site_2& p, const Site_2& q, const Site_2& t) const { CGAL_precondition( t.is_point() ); if ( p.is_point() && q.is_point() ) {#if 1 return incircle_ppp(p, q, t, ITag());#else Orientation o = COLLINEAR; // the initialization was done in // order a compiler warning // do some geometric filtering... bool p_exact = p.is_input(); bool q_exact = q.is_input(); bool t_exact = t.is_input(); bool filtered = false; // the following if-statement does the gometric filtering... // maybe it is not so important since this will only be // activated if a lot of intersection points appear on the // convex hull if ( !p_exact || !q_exact || !t_exact ) { if ( !p_exact && !q_exact && !t_exact ) { if ( have_common_support(p, q) && have_common_support(q, t) ) { o = COLLINEAR; filtered = true; } } else if ( !p_exact && !q_exact && t_exact ) { if ( is_on_common_support(p, q, t.point()) ) { o = COLLINEAR; filtered = true; } } else if ( !p_exact && q_exact && !t_exact ) { if ( is_on_common_support(p, t, q.point()) ) { o = COLLINEAR; filtered = true; } } else if ( p_exact && !q_exact && !t_exact ) { if ( is_on_common_support(t, q, p.point()) ) { o = COLLINEAR; filtered = true; } } else if ( !p_exact && q_exact && t_exact ) { if ( have_common_support(p, q.point(), t.point()) ) { o = COLLINEAR; filtered = true; } } else if ( p_exact && !q_exact && t_exact ) { if ( have_common_support(q, p.point(), t.point()) ) { o = COLLINEAR; filtered = true; } } else if ( p_exact && q_exact && !t_exact ) { if ( have_common_support(t, p.point(), q.point()) ) { o = COLLINEAR; filtered = true; } } } Point_2 pp = p.point(), qp = q.point(), tp = t.point(); if ( !filtered ) { // MK::ERROR: here I should call a kernel object, not a // function...; actually here (and everywhere in this class) // use the orientation predicate for sites; it does some // geometric filtering... o = orientation(pp, qp, tp); } if ( o != COLLINEAR ) { return (o == LEFT_TURN) ? POSITIVE : NEGATIVE; } // MK::ERROR: change the following code to use the compare_x_2 // and compare_y_2 stuff... RT dtpx = pp.x() - tp.x(); RT dtpy = pp.y() - tp.y(); RT dtqx = qp.x() - tp.x(); RT minus_dtqy = -qp.y() + tp.y(); Sign s = sign_of_determinant2x2(dtpx, dtpy, minus_dtqy, dtqx); CGAL_assertion( s != ZERO ); return s;#endif } CGAL_assertion( p.is_point() || q.is_point() ); Orientation o; if ( p.is_point() && q.is_segment() ) { Point_2 pq = same_points(p, q.source_site()) ? q.target() : q.source(); o = orientation(p.point(), pq, t.point()); } else { // p is a segment and q is a point Point_2 pp = same_points(q, p.source_site()) ? p.target() : p.source(); o = orientation(pp, q.point(), t.point()); } return ( o == RIGHT_TURN ) ? NEGATIVE : POSITIVE; } //----------------------------------------------------------------------- Sign incircle_pps(const Site_2& p, const Site_2& q, const Site_2& t) const { CGAL_precondition( p.is_point() && q.is_point() ); bool is_p_tsrc = same_points(p, t.source_site()); bool is_p_ttrg = same_points(p, t.target_site()); bool is_q_tsrc = same_points(q, t.source_site()); bool is_q_ttrg = same_points(q, t.target_site()); bool is_p_on_t = is_p_tsrc || is_p_ttrg; bool is_q_on_t = is_q_tsrc || is_q_ttrg; if ( is_p_on_t && is_q_on_t ) { // if t is the segment joining p and q then t must be a vertex // on the convex hull return NEGATIVE; } else if ( is_p_on_t ) { // p is an endpoint of t // in this case the p,q,oo vertex is destroyed only if the // other endpoint of t is beyond Point_2 pt = is_p_tsrc ? t.target() : t.source(); Orientation o = orientation(p.point(), q.point(), pt); return (o == RIGHT_TURN) ? NEGATIVE : POSITIVE; } else if ( is_q_on_t ) { Point_2 pt = is_q_tsrc ? t.target() : t.source(); Orientation o = orientation(p.point(), q.point(), pt); return (o == RIGHT_TURN) ? NEGATIVE : POSITIVE; } else { // maybe here I should immediately return POSITIVE; // since we insert endpoints of segments first, p and q cannot // be consecutive points on the convex hull if one of the // endpoints of t is to the right of the line pq. Point_2 pp = p.point(), qq = q.point(); Orientation o1 = orientation(pp, qq, t.source()); Orientation o2 = orientation(pp, qq, t.target()); if ( o1 == RIGHT_TURN || o2 == RIGHT_TURN ) { return NEGATIVE; } return POSITIVE; } } Sign incircle_sps(const Site_2& p, const Site_2& q, const Site_2& t) const { CGAL_precondition( p.is_segment() && q.is_point() ); bool is_q_tsrc = same_points(q, t.source_site()); bool is_q_ttrg = same_points(q, t.target_site()); bool is_q_on_t = is_q_tsrc || is_q_ttrg; if ( is_q_on_t ) { Point_2 pp = same_points(q, p.source_site()) ? p.target() : p.source(); Point_2 pt = is_q_tsrc ? t.target() : t.source(); Orientation o = orientation(pp, q.point(), pt); return (o == RIGHT_TURN) ? NEGATIVE : POSITIVE; } else { return POSITIVE; } } Sign incircle_pss(const Site_2& p, const Site_2& q, const Site_2& t) const { CGAL_precondition( p.is_point() && q.is_segment() ); bool is_p_tsrc = same_points(p, t.source_site()); bool is_p_ttrg = same_points(p, t.target_site()); bool is_p_on_t = is_p_tsrc || is_p_ttrg; if ( is_p_on_t ) { Point_2 pq = same_points(p, q.source_site()) ? q.target() : q.source(); Point_2 pt = is_p_tsrc ? t.target() : t.source(); Orientation o = orientation(p.point(), pq, pt); return (o == RIGHT_TURN) ? NEGATIVE : POSITIVE; } else { // if p is not an endpoint of t, then either p and q should // not be on the convex hull or t does not affect the vertex // of p and q. return POSITIVE; } } Sign incircle_s(const Site_2& p, const Site_2& q, const Site_2& t) const { CGAL_precondition( t.is_segment() ); if ( p.is_point() && q.is_point() ) { return incircle_pps(p, q, t); } else if ( p.is_point() && q.is_segment() ) { return incircle_pss(p, q, t); } else { // p is a segment and q is a point return incircle_sps(p, q, t); } }public: typedef Site_2 argument_type; typedef Sign result_type; struct Arity {}; Sign operator()(const Site_2& p, const Site_2& q, const Site_2& r, const Site_2& t) const { Voronoi_vertex_2 v(p, q, r); return v.incircle(t); } Sign operator()(const Site_2& p, const Site_2& q, const Site_2& t) const { CGAL_assertion( !(p.is_segment() && q.is_segment()) ); if ( p.is_point() && q.is_segment() ) { // p must be an endpoint of q CGAL_assertion( same_points(p, q.source_site()) || same_points(p, q.target_site()) ); } else if ( p.is_segment() && q.is_point() ) { // q must be an endpoint of p CGAL_assertion( same_points(p.source_site(), q) || same_points(p.target_site(), q) ); } if ( t.is_point() ) { // return incircle_p(p, q, t); return incircle_p(q, p, t); } // MK::ERROR: do geometric filtering when orientation is called. // return incircle_s(p, q, t); return incircle_s(q, p, t); }};//---------------------------------------------------------------------CGAL_SEGMENT_DELAUNAY_GRAPH_2_END_NAMESPACECGAL_END_NAMESPACE#endif // CGAL_SEGMENT_DELAUNAY_GRAPH_2_VERTEX_CONFLICT_C2_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -