⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sqrt_extension_1.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2003,2004,2005,2006  INRIA Sophia-Antipolis (France) and// Notre Dame University (U.S.A.).  All rights reserved.//// This file is part of CGAL (www.cgal.org); you may redistribute it under// the terms of the Q Public License version 1.0.// See the file LICENSE.QPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Segment_Delaunay_graph_2/include/CGAL/Segment_Delaunay_graph_2/Sqrt_extension_1.h $// $Id: Sqrt_extension_1.h 35201 2006-11-16 12:42:59Z hemmer $// //// Author(s)     : Menelaos Karavelas <mkaravel@cse.nd.edu>#ifndef CGAL_SEGMENT_DELAUNAY_GRAPH_2_SQRT_EXTENSION_1_H#define CGAL_SEGMENT_DELAUNAY_GRAPH_2_SQRT_EXTENSION_1_H#include <CGAL/basic.h>#include <CGAL/enum.h>#include <iostream>CGAL_BEGIN_NAMESPACEtemplate<class NT>class Sqrt_extension_1;template<class NT>class Sqrt_extension_1{private:  NT x, y, r;private:  typedef Sqrt_extension_1<NT>   Self;public:  typedef NT                  FT;  typedef NT                  RT;  Sqrt_extension_1() : x(0), y(0), r(0) {}  Sqrt_extension_1(int i) : x(i), y(0), r(0) {}  Sqrt_extension_1(const NT& a) : x(a), y(0), r(0) {}  Sqrt_extension_1(const NT& a, const NT& b, const NT& c)    : x(a), y(b), r(c)  {    CGAL_exactness_assertion( !(CGAL::is_negative(r)) );  }  Sqrt_extension_1(const Sqrt_extension_1<NT>& other)    : x(other.x), y(other.y), r(other.r) {}  NT a() const { return x; }  NT b() const { return y; }  NT c() const { return r; }  Self square() const  {    NT xy = x * y;    return Self(CGAL::square(x) + CGAL::square(y) * r,		xy + xy,		r);  }  Sign sign() const  {    Sign sx = CGAL::sign(x);    if ( CGAL::sign(r) == ZERO )  { return sx; }    Sign sy = CGAL::sign(y);    if ( sx == sy )  { return sx; }    if ( sx == ZERO )  { return sy; }    return Sign( sx * CGAL::compare( CGAL::square(x),				     r * CGAL::square(y) )		 );  }  const Self& operator+() const  {    return (*this);  }  Self operator-() const  {    return Self(-x, -y, r);  }  double to_double() const  {    // THIS MUST BE CHECK WITH SYLVAIN FOR CORRECTNESS    double xd = CGAL::to_double(x);    double yd = CGAL::to_double(y);    double rd = CGAL::to_double(r);    return (xd + yd * CGAL::sqrt(rd));  }  std::pair<double,double> to_interval() const  {    // THIS MUST BE CHECK WITH SYLVAIN FOR CORRECTNESS    std::pair<double,double> x_ivl = CGAL::to_interval(x);    std::pair<double,double> y_ivl = CGAL::to_interval(y);    std::pair<double,double> r_ivl = CGAL::to_interval(r);    std::pair<double,double> sqrt_r_ivl(CGAL::sqrt(r_ivl.first),					CGAL::sqrt(r_ivl.second));    std::pair<double,double>      ivl(x_ivl.first + y_ivl.first * sqrt_r_ivl.first,	  x_ivl.second + y_ivl.second * sqrt_r_ivl.second);    return ivl;  }};// operator *template<class NT>inlineSqrt_extension_1<NT>operator*(const Sqrt_extension_1<NT>& x, const NT& n){  return Sqrt_extension_1<NT>(x.a() * n, x.b() * n, x.c());}template<class NT>inlineSqrt_extension_1<NT>operator*(const NT& n, const Sqrt_extension_1<NT>& x){  return (x * n);}template<class NT>inlineSqrt_extension_1<NT>operator*(const Sqrt_extension_1<NT>& x, const Sqrt_extension_1<NT>& y){  CGAL_exactness_precondition( CGAL::compare(x.c(), y.c()) == EQUAL );  NT a = x.a() * y.a() + x.b() * y.b() * x.c();  NT b = x.a() * y.b() + x.b() * y.a();  return Sqrt_extension_1<NT>(a, b, x.c());}// operator +template<class NT>inlineSqrt_extension_1<NT>operator+(const Sqrt_extension_1<NT>& x, const NT& n){  return Sqrt_extension_1<NT>(x.a() + n, x.b(), x.c());}template<class NT>inlineSqrt_extension_1<NT>operator+(const NT& n, const Sqrt_extension_1<NT>& x){  return (x + n);}template<class NT>inlineSqrt_extension_1<NT>operator+(const Sqrt_extension_1<NT>& x, const Sqrt_extension_1<NT>& y){  CGAL_exactness_precondition( CGAL::compare(x.c(), y.c()) == EQUAL );  return Sqrt_extension_1<NT>(x.a() + y.a(), x.b() + y.b(), x.c());}// operator -template<class NT>inlineSqrt_extension_1<NT>operator-(const Sqrt_extension_1<NT>& x, const NT& n){  return x + (-n);}template<class NT>inlineSqrt_extension_1<NT>operator-(const NT& n, const Sqrt_extension_1<NT>& x){  return -(x - n);}template<class NT>inlineSqrt_extension_1<NT>operator-(const Sqrt_extension_1<NT>& x, const Sqrt_extension_1<NT>& y){  return (x + (-y));}//=============================================================template <class NT> struct Algebraic_structure_traits<Sqrt_extension_1<NT> >    :public Algebraic_structure_traits_base<Sqrt_extension_1<NT>,CGAL::Integral_domain_without_division_tag>{    // I haven't found division private:    typedef Algebraic_structure_traits<NT> AST_NT;public:    typedef Sqrt_extension_1<NT> Algebraic_structure;    typedef typename AST_NT::Is_exact Is_exact;};template<class NT>struct Real_embeddable_traits<Sqrt_extension_1<NT> >{private:    typedef Real_embeddable_traits<NT> RET_NT;public:        typedef Sqrt_extension_1<NT> Real_embeddable;        class Abs         : public Unary_function< Real_embeddable, Real_embeddable >{    public:        Real_embeddable operator()(const Real_embeddable& x) const {            return (x>=0)?x:-x;        }    };        class Sign         : public Unary_function< Real_embeddable, CGAL::Sign >{    public:        CGAL::Sign operator()(const Real_embeddable& x) const {            return x.sign();        }    };        class Compare         : public Binary_function< Real_embeddable,                                   Real_embeddable,                                   CGAL::Comparison_result >{    public:        CGAL::Comparison_result operator()(                const Real_embeddable& x,                 const Real_embeddable& y) const {            CGAL_exactness_precondition( CGAL::compare(x.c(), y.c()) == EQUAL );            return (x - y).sign();            // This is not needed due to equality of CGAL::Sign CGAL::Comparison_result//             CGAL::Sign s = (x - y).sign();//             if ( s == ZERO ) { return EQUAL; }//             return (s == POSITIVE) ? LARGER : SMALLER;        }    };        class To_double         : public Unary_function< Real_embeddable, double >{    public:        double operator()(const Real_embeddable& x) const {            return x.to_double();        }    };        class To_interval         : public Unary_function< Real_embeddable, std::pair< double, double > >{    public:        std::pair<double,double> operator()(const Real_embeddable& x) const {            return x.to_interval();        }    };   };// operator <<template<class Stream, class NT>inlineStream&operator<<(Stream& os, const Sqrt_extension_1<NT>& x){  os << "(" << x.a()  << ")+(" << x.b() << ") sqrt{" << x.c() << "}";  return os;}CGAL_END_NAMESPACE#endif // CGAL_SEGMENT_DELAUNAY_GRAPH_2_SQUARE_ROOT_1_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -