📄 vectorh2.h
字号:
// Copyright (c) 1999 Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel). All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Homogeneous_kernel/include/CGAL/Homogeneous/VectorH2.h $// $Id: VectorH2.h 33113 2006-08-07 15:57:40Z spion $// //// Author(s) : Stefan Schirra #ifndef CGAL_HOMOGENEOUS_VECTOR_2_h#define CGAL_HOMOGENEOUS_VECTOR_2_h#include <CGAL/Origin.h>#include <CGAL/Threetuple.h>CGAL_BEGIN_NAMESPACEtemplate < class R_ >class VectorH2{ typedef VectorH2<R_> Self; typedef typename R_::FT FT; typedef typename R_::RT RT; typedef typename R_::Point_2 Point_2; typedef typename R_::Segment_2 Segment_2; typedef typename R_::Ray_2 Ray_2; typedef typename R_::Line_2 Line_2; typedef typename R_::Direction_2 Direction_2; typedef typename R_::Vector_2 Vector_2; typedef Threetuple<RT> Rep; typedef typename R_::template Handle<Rep>::type Base; typedef Rational_traits<FT> Rat_traits; Base base;public: typedef const FT Cartesian_coordinate_type; typedef const RT& Homogeneous_coordinate_type; typedef R_ R; VectorH2() {} VectorH2(int x, int y) : base(x, y, RT(1)) {} VectorH2(const RT& x, const RT& y) : base (x, y, RT(1)) {} VectorH2(const FT& x, const FT& y) : base(Rat_traits().numerator(x) * Rat_traits().denominator(y), Rat_traits().numerator(y) * Rat_traits().denominator(x), Rat_traits().denominator(x) * Rat_traits().denominator(y)) { CGAL_kernel_assertion(hw() > 0); } VectorH2(const RT& x, const RT& y, const RT& w ) { if ( w >= RT(0) ) base = Rep( x, y, w); else base = Rep(-x, -y, -w); } const Self& rep() const { return static_cast<const Self& >(*this); } bool operator==( const VectorH2<R>& v) const; bool operator!=( const VectorH2<R>& v) const; bool operator==( const Null_vector&) const; bool operator!=( const Null_vector& v) const; const RT & hx() const { return get(base).e0; }; const RT & hy() const { return get(base).e1; }; const RT & hw() const { return get(base).e2; }; FT x() const { return FT(hx()) / FT(hw()); }; FT y() const { return FT(hy()) / FT(hw()); }; FT cartesian(int i) const; const RT & homogeneous(int i) const; FT operator[](int i) const; int dimension() const; Direction_2 direction() const; Vector_2 perpendicular(const Orientation& o ) const; // Vector_2 operator+(const VectorH2 &v) const; Vector_2 operator-(const VectorH2 &v) const; Vector_2 operator-() const; Vector_2 opposite() const; FT squared_length() const; // Vector_2 operator/(const RT &f) const; //Vector_2 operator/(const FT &f) const;// undocumented: VectorH2(const Direction_2 & dir) : base ( dir) {} VectorH2(const Point_2 & p) : base ( p) {}};template < class R >inlineboolVectorH2<R>::operator==( const Null_vector&) const{ return (hx() == RT(0)) && (hy() == RT(0)); }template < class R >inlineboolVectorH2<R>::operator!=( const Null_vector& v) const{ return !(*this == v); }template < class R >CGAL_KERNEL_INLINEboolVectorH2<R>::operator==( const VectorH2<R>& v) const{ return ( (hx() * v.hw() == v.hx() * hw() ) &&(hy() * v.hw() == v.hy() * hw() ) );}template < class R >inlineboolVectorH2<R>::operator!=( const VectorH2<R>& v) const{ return !(*this == v); } /* XXX */template < class R >CGAL_KERNEL_INLINEtypename VectorH2<R>::FTVectorH2<R>::cartesian(int i) const{ CGAL_kernel_precondition( (i==0 || i==1) ); if (i==0) return x(); return y();}template < class R >CGAL_KERNEL_INLINEconst typename VectorH2<R>::RT &VectorH2<R>::homogeneous(int i) const{ CGAL_kernel_precondition( (i>=0) && (i<=2) ); if (i==0) return hx(); if (i==1) return hy(); return hw();}template < class R >inlinetypename VectorH2<R>::FTVectorH2<R>::operator[](int i) const{ return cartesian(i); }template < class R >inlineintVectorH2<R>::dimension() const{ return 2; }template < class R >CGAL_KERNEL_INLINEtypename VectorH2<R>::Direction_2VectorH2<R>::direction() const{ return Direction_2(hx(), hy()); }template < class R >inlinetypename VectorH2<R>::Vector_2VectorH2<R>::operator-() const{ return VectorH2<R>(- hx(), - hy(), hw() ); }template < class R >inlinetypename VectorH2<R>::Vector_2VectorH2<R>::opposite() const{ return VectorH2<R>(- hx(), - hy(), hw() ); }template <class R>CGAL_KERNEL_INLINEtypename VectorH2<R>::Vector_2VectorH2<R>::operator-(const VectorH2<R>& v) const{ return VectorH2<R>( hx()*v.hw() - v.hx()*hw(), hy()*v.hw() - v.hy()*hw(), hw()*v.hw() );}template <class R>CGAL_KERNEL_INLINEtypename VectorH2<R>::FTVectorH2<R>::squared_length() const{ typedef typename R::FT FT; return FT( CGAL_NTS square(hx()) + CGAL_NTS square(hy()) ) / FT( CGAL_NTS square(hw()) );}template < class R >CGAL_KERNEL_INLINEtypename R::Vector_2VectorH2<R>::perpendicular(const Orientation& o) const{ CGAL_kernel_precondition(o != COLLINEAR); if (o == COUNTERCLOCKWISE) return typename R::Vector_2(-hy(), hx(), hw()); else return typename R::Vector_2(hy(), -hx(), hw());}CGAL_END_NAMESPACE#endif // CGAL_HOMOGENEOUS_VECTOR_2_h
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -