⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vectorh3.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 1999  Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel).  All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Homogeneous_kernel/include/CGAL/Homogeneous/VectorH3.h $// $Id: VectorH3.h 33113 2006-08-07 15:57:40Z spion $// //// Author(s)     : Stefan Schirra #ifndef CGAL_HOMOGENEOUS_VECTOR_3_H#define CGAL_HOMOGENEOUS_VECTOR_3_H#include <CGAL/Origin.h>#include <CGAL/Fourtuple.h>CGAL_BEGIN_NAMESPACEtemplate < class R_ >class VectorH3{  typedef typename R_::RT                   RT;  typedef typename R_::FT                   FT;  typedef typename R_::Point_3              Point_3;  typedef typename R_::Vector_3             Vector_3;  typedef typename R_::Segment_3            Segment_3;  typedef typename R_::Ray_3                Ray_3;  typedef typename R_::Line_3               Line_3;  typedef typename R_::Direction_3          Direction_3;  typedef Fourtuple<RT>                            Rep;  typedef typename R_::template Handle<Rep>::type  Base;  typedef Rational_traits<FT>               Rat_traits;  Base base;public:  typedef R_                 R;  VectorH3() {}  VectorH3(const Point_3& a, const Point_3& b)  { *this = R().construct_vector_3_object()(a, b); }  VectorH3(const Segment_3& s)  { *this = R().construct_vector_3_object()(s); }  VectorH3(const Ray_3& r)  { *this = R().construct_vector_3_object()(r); }  VectorH3(const Line_3& l)  { *this = R().construct_vector_3_object()(l); }  VectorH3(const Null_vector&)    : base(RT(0), RT(0), RT(0), RT(1)) {}  VectorH3(int x, int y, int z)    : base(x, y, z, RT(1)) {}  VectorH3(const RT& x, const RT& y, const RT& z)    : base(x, y, z, RT(1)) {}  VectorH3(const FT& x, const FT& y, const FT& z)    : base(Rat_traits().numerator(x) * Rat_traits().denominator(y)                                     * Rat_traits().denominator(z),           Rat_traits().numerator(y) * Rat_traits().denominator(x)                                     * Rat_traits().denominator(z),           Rat_traits().numerator(z) * Rat_traits().denominator(x)                                     * Rat_traits().denominator(y),           Rat_traits().denominator(x) * Rat_traits().denominator(y)                                       * Rat_traits().denominator(z))  {    CGAL_kernel_assertion(hw() > 0);  }  VectorH3(const RT& w, const RT& x, const RT& y, const RT& z);  const RT & hx() const { return get(base).e0 ; }  const RT & hy() const { return get(base).e1 ; }  const RT & hz() const { return get(base).e2 ; }  const RT & hw() const { return get(base).e3 ; }  FT    x()  const { return FT(hx())/FT(hw()) ; }  FT    y()  const { return FT(hy())/FT(hw()) ; }  FT    z()  const { return FT(hz())/FT(hw()) ; }  const RT & homogeneous(int i) const;  FT    cartesian(int i) const;  FT    operator[](int i) const;  int   dimension() const { return 3; };  Direction_3 direction() const;  Vector_3 operator-() const;  bool  operator==( const VectorH3<R>& v) const;  bool  operator!=( const VectorH3<R>& v) const;  Vector_3 operator+( const VectorH3 &v) const;  Vector_3 operator-( const VectorH3 &v) const;  FT squared_length() const;  Vector_3 operator/( const RT &f) const;  Vector_3 operator/( const FT &f) const;};template < class R >CGAL_KERNEL_INLINEVectorH3<R>::VectorH3(const RT& x, const RT& y, const RT& z, const RT& w){  if ( w >= RT(0) )    base = Rep(x, y, z, w);  else    base = Rep(-x,-y,-z,-w);}template < class R >CGAL_KERNEL_INLINEtypename VectorH3<R>::FTVectorH3<R>::cartesian(int i) const{  CGAL_kernel_precondition(i == 0 || i == 1 || i == 2);  switch (i)  {      case 0:   return x();      case 1:   return y();  }  return z();}template < class R >CGAL_KERNEL_INLINEconst typename VectorH3<R>::RT &VectorH3<R>::homogeneous(int i) const{  CGAL_kernel_precondition(i == 0 || i == 1 || i == 2 || i == 3);  switch (i)  {      case 0:   return hx();      case 1:   return hy();      case 2:   return hz();  }  return hw() ;}template < class R >inlinetypename VectorH3<R>::Direction_3VectorH3<R>::direction() const{ return Direction_3(hx(), hy(), hz()); }template < class R >CGAL_KERNEL_INLINEboolVectorH3<R>::operator==( const VectorH3<R>& v) const{ return ( (hx() * v.hw() == v.hx() * hw() )        &&(hy() * v.hw() == v.hy() * hw() )        &&(hz() * v.hw() == v.hz() * hw() ) );}template < class R >inlineboolVectorH3<R>::operator!=( const VectorH3<R>& v) const{ return !(*this == v); }template < class R >inlinetypename VectorH3<R>::FTVectorH3<R>::operator[](int i) const{ return cartesian(i); }template < class R >CGAL_KERNEL_INLINEtypename VectorH3<R>::Vector_3VectorH3<R>::operator-() const{ return Vector_3( - hx(), - hy(), -hz(), hw() ); }template <class R>CGAL_KERNEL_INLINEtypename R::Vector_3VectorH3<R>::operator+(const VectorH3<R>& v) const{  return typename R::Vector_3(hx()*v.hw() + v.hx()*hw(),                              hy()*v.hw() + v.hy()*hw(),                              hz()*v.hw() + v.hz()*hw(),                              hw()*v.hw() );}template <class R>CGAL_KERNEL_INLINEtypename R::Vector_3VectorH3<R>::operator-(const VectorH3<R>& v) const{  return typename R::Vector_3(hx()*v.hw() - v.hx()*hw(),                              hy()*v.hw() - v.hy()*hw(),                              hz()*v.hw() - v.hz()*hw(),                              hw()*v.hw() );}template <class R>CGAL_KERNEL_INLINEtypename VectorH3<R>::FTVectorH3<R>::squared_length() const{  typedef typename R::FT FT;  return     FT( CGAL_NTS square(hx()) + 	CGAL_NTS square(hy()) + 	CGAL_NTS square(hz()) ) /     FT( CGAL_NTS square(hw()) );}template <class R>CGAL_KERNEL_INLINEtypename R::Vector_3VectorH3<R>::operator/(const typename VectorH3<R>::RT& f) const{ return typename R::Vector_3( hx(), hy(), hz(), hw()*f ); }template <class R>CGAL_KERNEL_INLINEtypename R::Vector_3VectorH3<R>::operator/(const typename VectorH3<R>::FT& f) const{ return typename R::Vector_3(hx()*f.denominator(), hy()*f.denominator(),		              hz()*f.denominator(), hw()*f.numerator() ); }CGAL_END_NAMESPACE#endif // CGAL_HOMOGENEOUS_VECTOR_3_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -