⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sturm_root_counter.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2005  Stanford University (USA).// All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Kinetic_data_structures/include/CGAL/Polynomial/internal/Rational/Sturm_root_counter.h $// $Id: Sturm_root_counter.h 35780 2007-01-24 04:44:16Z drussel $// //// Author(s)     : Daniel Russel <drussel@alumni.princeton.edu>#ifndef CGAL_POLYNOMIAL_INTERNAL_STURM_ROOT_COUNTER_H#define CGAL_POLYNOMIAL_INTERNAL_STURM_ROOT_COUNTER_H#include <CGAL/Polynomial/basic.h>#include <CGAL/Polynomial/internal/Sign_variations_counter.h>CGAL_POLYNOMIAL_BEGIN_INTERNAL_NAMESPACEtemplate<class Kernel>struct Sturm_root_counter{    public:        typedef typename Kernel::Function::NT argument_type;        typedef typename Kernel::Function::NT first_argument_type;        typedef typename Kernel::Function::NT second_argument_type;        typedef unsigned int            result_type;    protected:        typedef typename Kernel::Function Polynomial;        typedef typename Kernel::Function::NT   NT;        template<class NTRep>            unsigned int number_of_real_roots_base(const NTRep& a,            const NTRep& b) const        {            CGAL_precondition( b >= a );            unsigned int Va = sign_variations_near(a, true);            if ( Va == 0 ) { return 0; }            unsigned int Vb = sign_variations_near(b, false);//CGAL_assertion( Va > Vb );            return Va - Vb;        }        template<class Iterator>            static            unsigned int sign_variations(const Iterator& first,        const Iterator& beyond) {            return Sign_variations_counter::sign_variations(first, beyond);        }        template<class NTRep>            unsigned int sign_variations_near(const NTRep& x, bool above) const        {//CGAL::Sign s0 = k_.sign_at_object( sseq[0] )(x);//CGAL_exactness_precondition( s0 != CGAL::ZERO );// MK:: We need to optimize that; if f(a) is not zero then I don't// care about zeros later on in the sequence.            std::vector<Sign> signs(sseq.size());	    //typename K::Sign_at sa= k_.sign_at_object();            for (unsigned int i = 0; i < sseq.size(); i++) {	      if (above) {		signs[i] = k_.sign_above_object( sseq[i] )(x);	      }	      else {		signs[i] = k_.sign_below_object( sseq[i] )(x);	      }		//signs[i]= sa(sseq[i], x);            }            return sign_variations(signs.begin(), signs.end());        }    public:        Sturm_root_counter():sseq(){}        Sturm_root_counter(const typename Kernel::Function& p,            const Kernel& k)            : k_(k), sseq(k_.Sturm_sequence_object(p, k_.differentiate_object()(p))) {}        Sturm_root_counter(const typename Kernel::Standard_sequence& sseq,            Kernel k= Kernel())            : k_(k), sseq(sseq) {}        template<class T>            result_type            operator()(const T& a) const        {            return sseq.sign_variations(a);        }        template <class T>            result_type            operator()(const T& a, const T& b) const        {            return number_of_real_roots_base(a, b);        }    protected:        Kernel k_;        typename Kernel::Sturm_sequence sseq;};CGAL_POLYNOMIAL_END_INTERNAL_NAMESPACE#endif                                            // CGAL_STURM_ROOT_COUNTER_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -