⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 primitive_part_sturm_sequence.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2005  Stanford University (USA).// All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Kinetic_data_structures/include/CGAL/Polynomial/internal/Rational/Primitive_part_Sturm_sequence.h $// $Id: Primitive_part_Sturm_sequence.h 35072 2006-11-06 23:57:15Z drussel $// //// Author(s)     : Daniel Russel <drussel@alumni.princeton.edu>#ifndef CGAL_POLYNOMIAL_INTERNAL_PRIMITIVE_PART_STURM_SEQUENCE_H#define CGAL_POLYNOMIAL_INTERNAL_PRIMITIVE_PART_STURM_SEQUENCE_H#include <CGAL/Polynomial/basic.h>#include <CGAL/Polynomial/Polynomial.h>#include <CGAL/Polynomial/internal/Sign_variations_counter.h>#include <CGAL/Polynomial/internal/Rational/Sturm_sequence_base.h>/*!  \file Monic_Sturm_sequence.h A non-filtered Sturm sequence class  that consists monic polynomials.*/CGAL_POLYNOMIAL_BEGIN_INTERNAL_NAMESPACEtemplate<class Kernel_t>class Primitive_part_Sturm_sequence: public Sturm_sequence_base<Kernel_t>{    protected:        typedef Sturm_sequence_base<Kernel_t>    Base;    public:        typedef typename Base::Kernel            Kernel;        typedef typename Base::Polynomial        Polynomial;        typedef typename Base::NT                NT;    protected:        template<class RT>        static RT abs(const RT& x) {            return CGAL::abs(x);        }        template<class RT>        static RT gcd(const RT& x, const RT& y) {            return CGAL::gcd(x, y);        }        template<class RT>        static RT lcm(const RT& x, const RT& y) {            return (x * y) / CGAL::gcd(x, y);        }        template<class RT>        static RT compute_gcd(const CGAL_POLYNOMIAL_NS::Polynomial<RT>& p) {            int deg = p.degree();            if ( deg < 0 ) { return RT(1); }            if ( deg == 0 ) { return abs(p[0]); }            RT gcd_ = gcd(abs(p[0]), abs(p[1]));            for (int i = 2; i <= deg; i++) {                gcd_ = gcd(gcd_, abs(p[i]));            }            return gcd_;        }        template<class RT>        static RT compute_lcm(const CGAL_POLYNOMIAL_NS::Polynomial<RT>& p) {            int deg = p.degree();            CGAL_assertion( deg >= 1 );            RT lcm_ = lcm(abs(p[0]), abs(p[1]));            for (int i = 2; i <= deg; i++) {                lcm_ = lcm(lcm_, abs(p[i]));            }            return lcm_;        }        template<class RT>        static RT compute_lazy_lcm(const CGAL_POLYNOMIAL_NS::Polynomial<RT>& p) {            int deg = p.degree();            CGAL_assertion( deg >= 1 );            RT lcm_ = abs(p[0] * p[1]);            for (int i = 2; i <= deg; i++) {                lcm_ *= abs(p[i]);            }            return lcm_;        }        static Polynomial compute_integer_polynomial(const Polynomial& p) {            typedef typename Rational_traits<NT>::RT    RT;            typedef CGAL_POLYNOMIAL_NS::Polynomial<RT>       RT_Polynomial;            int deg = p.degree();            if ( deg < 0 ) { return p; }            if ( deg == 0 ) {                if ( p[0] > 0 ) {                    return Polynomial(NT(1));                }                else {                    return Polynomial(NT(-1));                }            }            Rational_traits<NT> rational_traits;            std::vector<RT> denominators(deg+1);            for (int i = 0; i <= deg; i++) {                denominators[i] = rational_traits.denominator(p[i]);            }            RT lcm_ = compute_lcm( RT_Polynomial(denominators.begin(),                denominators.end()) );            NT lcmq_ = rational_traits.make_rational(lcm_, RT(1));            return p * lcmq_;        }        static Polynomial compute_primitive_polynomial(const Polynomial& p) {            typedef typename Rational_traits<NT>::RT    RT;            typedef CGAL_POLYNOMIAL_NS::Polynomial<RT>       RT_Polynomial;// we assume that p has only integer coefficients            int deg = p.degree();            if ( deg < 0 ) { return p; }            if ( deg == 0 ) {                if ( p[0] > 0 ) {                    return Polynomial(NT(1));                }                else {                    return Polynomial(NT(-1));                }            }            Rational_traits<NT> rational_traits;            std::vector<RT> numerators(deg+1);            for (int i = 0; i <= deg; i++) {                numerators[i] = rational_traits.numerator(p[i]);            }            RT gcd_ = compute_gcd( RT_Polynomial(numerators.begin(),                numerators.end()) );            NT gcdq_ = rational_traits.make_rational(gcd_, RT(1));            return p / gcdq_;        }        void compute_sequence(const Polynomial& p, const Polynomial& q) {// I HAVE TO FIX THE BUG THAT EXISTS HERE; THE FOLLOWING CODE MAY// NOT WORK CORRECTLY IF p IS THE ZERO POLYNOMIAL AND q IS NOT// IN GENERAL I HAVE TO CONSIDER ALL THE LIMITING CASES            Polynomial ip = compute_integer_polynomial(p);            Polynomial iq = compute_integer_polynomial(q);            Polynomial p_prim = compute_primitive_polynomial(ip);            Polynomial q_prim = compute_primitive_polynomial(iq);            if ( p.degree() >= 0 ) {                add( p_prim );                this->size_++;            }            if ( q.degree() == -1 ) { return; }            this->add( q_prim );            this->size_++;            if ( p.degree() < q.degree() ) {                this->add( -this->seq_[0] );                this->size_++;            }            Polynomial r;            while ( true ) {                r = -this->k_.remainder_object()(this->seq_[this->size_ - 2],                    this->seq_[this->size_ - 1]);                if ( r.is_zero() ) { break; }// THE FOLLOWING HACK HAS BEEN DONE SO THAT MP_Float HOPEFULLY// DOES NOT RUN OUT OF EXPONENT BITS WHEN THE STURM SEQUENCE IS// COMPUTED                this->normalize(r, NT());                Polynomial ir = compute_integer_polynomial(r);                this->add( compute_primitive_polynomial(ir) );                this->size_++;            }        }    public:        Primitive_part_Sturm_sequence() : Base() {}        Primitive_part_Sturm_sequence(const Polynomial& p, const Polynomial& q,            const Kernel &k)        : Base(p, q, k) {            compute_sequence(p, q);        }};CGAL_POLYNOMIAL_END_INTERNAL_NAMESPACE#endif                                            // CGAL_POLYNOMIAL_INTERNAL_PRIMITIVE_PART_STURM_SEQUENCE_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -