⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fixed_polynomial_impl.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2005  Stanford University (USA).// All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Kinetic_data_structures/include/CGAL/Polynomial/internal/Fixed_polynomial_impl.h $// $Id: Fixed_polynomial_impl.h 33722 2006-08-25 08:36:04Z afabri $// //// Author(s)     : Daniel Russel <drussel@alumni.princeton.edu>#ifndef CGAL_FIXED_POLYNOMIAL_INTERNAL_POLYNOMIAL_CORE_H_#define CGAL_FIXED_POLYNOMIAL_INTERNAL_POLYNOMIAL_CORE_H_#include <CGAL/Polynomial/basic.h>#include <vector>#include <iostream>#include <CGAL/Polynomial/internal/Rational/Evaluate_polynomial.h>#include <sstream>#ifdef CGAL_CFG_MISSING_TEMPLATE_VECTOR_CONSTRUCTORS_BUG// need std::copy#include <algorithm>#endif#define CGAL_EXCESSIVE(x)CGAL_POLYNOMIAL_BEGIN_INTERNAL_NAMESPACEtemplate <class This, class NT_t, int D>class Fixed_polynomial_impl;template < class T, class NT, class C, class Tr, int D>inline std::ostream &operator<<(std::basic_ostream<C,Tr> &out,				const Fixed_polynomial_impl<T, NT, D> &poly);//! A basic polynomial class/*!  This handles everything having to do with polynomials which is to  not too numerically sensitive.  The poly is stored as a  vector. There are no 0 top coefficients in the vector.  I don't store a value for 0 (there is not stored offset) since the  polynomial will in general have to be recomputed when any  certificate is computed, and I don't see any way of benefiting from  delaying.  If the STRIP_ZEROS flag is true then leading zeros are stripped on  the fly. Otherwise you have to make sure that there are no leading  0s yourself. However, stripping leading 0s causes problems with an  interval is used as the number type.*///! todo: check resize and doublestemplate <class This, class NT_t, int D>class Fixed_polynomial_impl{public:  typedef NT_t                             NT;  typedef const NT*  iterator;  typedef NT                               result_type;  typedef NT                               argument_type;  //================  // CONSTRUCTORS  //================  //! Default  Fixed_polynomial_impl() {    for (unsigned int i=0; i<= D; ++i){      coefs_[i]=0;    }  }  //! Make a constant polynomial  Fixed_polynomial_impl(const NT& c) {    for (unsigned int i=1; i<= D; ++i){      coefs_[i]=0;    }    coefs_[0]=c;    //if (c != 0) degree_==0;    //else degree_=-1;  }  //! Get coefficients from a vector          template <class Iterator>  Fixed_polynomial_impl(Iterator first, Iterator beyond) {    std::copy(first, beyond, coefs_);    for (unsigned int i=std::distance(first, beyond); i<= D; ++i){      coefs_[i]=0;    }  }  //========================  // ACCESS TO COEFFICIENTS  //========================  //! Return the ith coefficient.  /*!    This must return a value for any value of i.  */  const NT& operator[](unsigned int i) const  {    CGAL_assertion( i <= D);    //if (i < coefs_.size()) {      return coefs_[i];      /*}    else {      return zero_coef();      }*/  }  //=====================================  //     ITERATORS FOR COEFFICIENTS  //=====================================  iterator begin() const  {    return coefs_;  }  iterator end() const  {    return coefs_+(std::min)(degree(), 0);  }  //=========  // DEGREE  //=========  //! For the more mathematical inclined (as opposed to size());  int degree() const  {    for (int i=D; i>= 0; --i){      if (coefs_[i] != 0) return i;    }    return -1;  }  //=============  // PREDICATES  //=============  //! Returns true if the polynomial is a constant function  bool is_constant() const  {    return degree() < 1;  }  //! Returns true if f(t)=0  bool is_zero() const  {    CGAL_Polynomial_assertion( coefs_.empty() == (coefs_.size()==0) );    return degree()==-1;  }  //=======================  //     OPERATORS  //=======================  //! negation  This operator-() const  {    This ret;    for (unsigned int i=0; i <= D; ++i) {      ret.coefs_[i] = -coefs_[i];    }    return ret;  }  //! polynomial addition  This operator+(const This &o) const  {    This ret;    for (unsigned int i=0; i<= D; ++i){      ret.coefs_[i]= coefs_[i]+ o.coefs_[i];    }    return ret;  }  //! polynomial subtraction  This operator-(const This &o) const  {    This ret;    for (unsigned int i=0; i<= D; ++i){      ret.coefs_[i]= coefs_[i]-o.coefs_[i];    }    //ret.finalize();    return ret;  }  //! polynomial multiplication  This operator*(const This &o) const  {    CGAL_precondition(degree() + o.degree() <= D);    This ret;    for (unsigned int i = 0; i <= D; ++i) {      for (unsigned int j = 0; j <= D-i; ++j) {	NT prev = ret[i+j];	NT result = prev + operator[](i) * o[j];	ret.coefs_[i+j] = result;      }    }    //ret.finalize();    //CGAL_EXCESSIVE(std::cout << *this << " * " << o << " = " << ret << std::endl);    return ret;  }  //! add a scalar  This operator+(const NT& a) const  {    This res(*this);    res.coefs_[0] += a;    //CGAL_EXCESSIVE(std::cout << *this << " + " << a << " = " << res << std::endl);    return res;  }  //! subtract a scalar  This operator-(const NT& a) const  {    return (*this) + (-a);  }  //! multiply with scalar  This operator*(const NT& a) const  {    This res;    for (unsigned int i = 0; i <= D; i++) {      res.coefs_[i] = coefs_[i] * a;    }    return res;  }  //! divide by scalar  This operator/(const NT& a) const  {    NT inv_a = NT(1) / a;    return (*this) * inv_a;  }  //=======================  // VALUE OF POLYNOMIAL  //=======================  //! Evaluate the polynomial at some value.  /*!    This is primarily for the solvers to call when they know the    number type is exact. Note, this method performs a construction    and is unreliable if an inexact number type is used  */  NT operator()(const NT &t) const  {    if (is_zero()) return NT(0);    else if (degree()==0 /* || t==NT(0)*/ ) {      return operator[](0);    }    else {      return evaluate_polynomial(coefs_, t);    }  }  //! The non-operator version of operator()  /*!   */  NT value_at(const NT &t) const  {    return operator()(t);  }  //! !operator==  bool operator!=(const This &o) const  {    return !operator==(o);  }  //! check if the coefficients are equal  bool operator==(const This &o) const  {    for (int i = 0; i <=D; ++i) {      if (o[i] != operator[](i)) return false;    }    return true;  }  void print()const  {    write(std::cout);  }  //! Read very stylized input  template <class charT, class Traits>  void read(std::basic_istream<charT, Traits> &in) {    bool pos=(in.peek()!='-');    if (in.peek() == '+' || in.peek() == '-') {      char c;      in >> c;    }    char v='\0';    while (true) {      char vc, t;      NT coef;      // eat      in >> coef;      if (in.fail()) return;      unsigned int pow;      char p= in.peek();      if (in.peek() =='*') {	in >> t >> vc;	if (t != '*') {	  in.setstate(std::ios_base::failbit);	  return;	  //return in;	}	if ( !(v=='\0' || v== vc)) {	  in.setstate(std::ios_base::failbit);	  return;	  //return in;	}	v=vc;	p=in.peek();	if (in.peek() =='^') {	  char c;	  in  >> c >> pow;	}	else {	  pow=1;	}      }      else {	pow=0;      }      if (pow > D) {	in.setstate(std::ios_base::failbit);	return;      }      if (!pos) coef=-coef;      coefs_[pow]=coef;      char n= in.peek();      if (n=='+' || n=='-') {	pos= (n!='-');	char e;	in >> e;      } else {	/*bool f= in.fail();	  bool g= in.good();	  bool e= in.eof();	  bool b= in.bad();*/	// This is necessary since peek could have failed if we hit the end of the buffer	// it would better to do without peek, but that is too messy	in.clear();	//std::cout << f << g << e << b<<std::endl;	break;      }    };  }  //! write it in maple format  template <class C, class T>  void write(std::basic_ostream<C,T> &out) const  {    std::basic_ostringstream<C,T> s;    s.flags(out.flags());    s.imbue(out.getloc());    s.precision(12);    if (degree()==0) {      s << "0";    }    else {      for (unsigned int i=0; i<= D; ++i) {	if (i==0) {	  if (coefs_[i] != 0) s << coefs_[i];	}	else {	  if ( coefs_[i] != 0 ) {	    if (coefs_[i] >0) s << "+";	    s << coefs_[i] << "*t";	    if (i != 1) {	      s << "^" << i;	    }	  }	}      }    }    out << s.str();  }  /*    typedef typename Coefficients::const_iterator Coefficients_iterator;    Coefficients_iterator coefficients_begin() const {    return coefs_.begin();    }    Coefficients_iterator coefficients_end() const {    return coefs_.end();    }*/protected:  //std::size_t size() const {return coefs_.size();}  static const NT & zero_coef() {    static NT z(0);    return z;  }  //! The actual coefficients  NT coefs_[D+1];};template < class T, class NT,  class C, class Tr, int D>inline std::ostream &operator<<(std::basic_ostream<C, Tr> &out,				const Fixed_polynomial_impl<T, NT, D> &poly){  poly.write(out);  return out;}template < class T, class NT, class C, class Tr, int D>inline std::istream &operator>>(std::basic_istream<C, Tr> &in,				Fixed_polynomial_impl<T, NT, D> &poly){  poly.read(in);  return in;}//! multiply by a constanttemplate <class T, class NT, int D>inline T operator*(const NT &a, const Fixed_polynomial_impl<T, NT, D> &poly){  return (poly * a);}//! add to a constanttemplate <class T, class NT, int D>inline T operator+(const NT &a, const Fixed_polynomial_impl<T, NT, D> &poly){  return (poly + a);}//! add to a constanttemplate < class T, class NT, int D>inline T  operator+(int a, const Fixed_polynomial_impl<T, NT, D> &poly){  return (poly + NT(a));}//! subtract from a constanttemplate <class T, class NT, int D>inline T operator-(const NT &a, const Fixed_polynomial_impl<T, NT, D> &poly){  return -(poly - a);}//! subtract from a constanttemplate <class T, class NT, int D>inline T operator-(int a, const Fixed_polynomial_impl<T, NT, D> &poly){  return -(poly - NT(a));}CGAL_POLYNOMIAL_END_INTERNAL_NAMESPACE#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -