⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 filtered_root_multiplicity.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2005  Stanford University (USA).// All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Kinetic_data_structures/include/CGAL/Polynomial/internal/Filtered_kernel/Filtered_root_multiplicity.h $// $Id: Filtered_root_multiplicity.h 35766 2007-01-20 21:39:01Z drussel $// //// Author(s)     : Daniel Russel <drussel@alumni.princeton.edu>#ifndef CGAL_POLYNOMIAL_INTERNAL_FILTERED_ROOT_MULTIPLICITYR_H#define CGAL_POLYNOMIAL_INTERNAL_FILTERED_ROOT_MULTIPLICITYR_H#include <CGAL/Polynomial/basic.h>#include <CGAL/Polynomial/internal/interval_arithmetic.h>CGAL_POLYNOMIAL_BEGIN_INTERNAL_NAMESPACEtemplate <class Kernel, class NTT>unsigned int filtered_root_multiplicity(const typename Kernel::Function &fh,					const NTT &t, const Kernel &k){  CGAL_Polynomial_exactness_assertion(k.sign_at_object(fh)(t)==CGAL_POLYNOMIAL_NS::ZERO);  //if (k.sign_at_object(fh)(t)!= ::CGAL::ZERO) return 0;  // need to check if it is an even root  int interval_deg=1;  int exact_deg=-1;  if (0) k.sign_at_object(fh);  typename Kernel::Interval_kernel::NT i;  typename Kernel::Interval_kernel::Function cfi;  {    CGAL_POLYNOMIAL_NS::Interval_arithmetic_guard gd;    if (fh.interval_function().is_zero()) return -1;    //typename POLYNOMIAL_NS::To_interval<NTT> ti;    i = k.interval_function_converter_object().nt_converter()(t);    cfi = fh.interval_function().derivative();  }  typename Kernel::Exact_kernel::Function cfe;  typename Kernel::Exact_kernel::NT e;  do {    typename Kernel::Interval_kernel::NT vali= cfi(i);    if (vali.sup() < 0 || vali.inf() >0) {      return interval_deg;    }    else if (vali.sup()==0 && vali.inf()==0) {    }    else {      //gd.set_enabled(false); // Turn off filtering for exact      // catch up exact and evaluate      if (exact_deg==-1) {	cfe= fh.exact_function().derivative();	exact_deg=1;	e= k.exact_function_converter_object().nt_converter()(t);      }      while (exact_deg < interval_deg) {	cfe= cfe.derivative();	++exact_deg;      }      typename Kernel::Exact_kernel::NT ev= cfe(e);      if (CGAL::sign(ev) == CGAL::ZERO) { {	  // update interval;	  /*To_interval<typename Kernel::Exact_kernel::Function::NT> ei;	    Polynomial_converter<typename Kernel::Exact_kernel::Function,	    typename Kernel::Interval_kernel::Function, ::CGAL::To_interval<typename Kernel::Exact_kernel::Function::NT> > pei(ei);*/	  // turn on filtering	  CGAL_POLYNOMIAL_NS::Interval_arithmetic_guard gd;	  cfi= k.exact_interval_function_converter_object()(cfe);	}      }      else {	// filtering is off	return interval_deg;      }    }    // filtering is on    {      CGAL_POLYNOMIAL_NS::Interval_arithmetic_guard gd;      cfi=cfi.derivative();    }    ++interval_deg;  } while (true);}template <class Kernel>class Filtered_root_multiplicity{public:  Filtered_root_multiplicity(){}  Filtered_root_multiplicity(const typename Kernel::Function &fh, Kernel k= Kernel()): h_(fh), kernel_(k) {  }  ~Filtered_root_multiplicity() {  }  typedef unsigned int result_type;  //typedef Bound_type argument_type;  typedef typename Kernel::Function::NT argument_type;  template <class NTT>  result_type operator()(const NTT &t) const  {    return filtered_root_multiplicity(h_, t, kernel_);  }protected:  typename Kernel::Function h_;  Kernel kernel_;};CGAL_POLYNOMIAL_END_INTERNAL_NAMESPACE#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -