📄 internal_functions_on_line_2.h
字号:
// Copyright (c) 2003-2006 INRIA Sophia-Antipolis (France).// All rights reserved.//// This file is part of CGAL (www.cgal.org); you may redistribute it under// the terms of the Q Public License version 1.0.// See the file LICENSE.QPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Circular_kernel_2/include/CGAL/Circular_kernel_2/internal_functions_on_line_2.h $// $Id: internal_functions_on_line_2.h 33659 2006-08-24 14:20:34Z pmachado $//// Author(s) : Monique Teillaud, Sylvain Pion// Partially supported by the IST Programme of the EU as a Shared-cost// RTD (FET Open) Project under Contract No IST-2000-26473 // (ECG - Effective Computational Geometry for Curves and Surfaces) // and a STREP (FET Open) Project under Contract No IST-006413 // (ACS -- Algorithms for Complex Shapes)#ifndef CGAL_CIRCULAR_KERNEL_FUNCTIONS_ON_LINE_2_H#define CGAL_CIRCULAR_KERNEL_FUNCTIONS_ON_LINE_2_Hnamespace CGAL {namespace LinearFunctors { template < class CK > typename CK::Polynomial_1_2 get_equation( const typename CK::Line_2 & L ) { typedef typename CK::RT RT; return typename CK::Polynomial_1_2(L.a(),L.b(),L.c()); } template < class CK > typename CK::Line_2 construct_line_2 ( const typename CK::Polynomial_1_2 &eq ) { return typename CK::Line_2(eq[2],eq[1],eq[0]); } template < class CK > bool has_on(const typename CK::Line_2 & l, const typename CK::Circular_arc_point_2 &p) { typedef typename CK::Algebraic_kernel AK; typedef typename CK::Polynomial_1_2 Polynomial_1_2; Polynomial_1_2 equation = CGAL::LinearFunctors::get_equation<CK>(l); return(AK().sign_at_object()(equation,p.coordinates())== ZERO); } template < class CK > inline bool non_oriented_equal(const typename CK::Line_2 & a1, const typename CK::Line_2 & a2) { if(identical(a1,a2)) return true; const typename CK::RT &a1c = a1.a(); const typename CK::RT &b1c = a1.b(); const typename CK::RT &c1c = a1.c(); const typename CK::RT &a2c = a2.a(); const typename CK::RT &b2c = a2.b(); const typename CK::RT &c2c = a2.c(); return (a1c*b2c == a2c*b1c) && (a1c*c2c == a2c*c1c) && (b1c*c2c == b2c*c1c); } template< class CK, class OutputIterator> OutputIterator intersect_2( const typename CK::Line_2 & l, const typename CK::Circle_2 & c, OutputIterator res ) { typedef typename CK::Algebraic_kernel AK; typedef typename CK::Polynomial_1_2 Equation_line; typedef typename CK::Polynomial_for_circles_2_2 Equation_circle; typedef typename CK::Root_for_circles_2_2 Root_for_circles_2_2; Equation_line e1 = CGAL::get_equation<CK>(l); Equation_circle e2 = CGAL::get_equation<CK>(c); typedef std::vector< std::pair < Root_for_circles_2_2, unsigned > > solutions_container; solutions_container solutions; AK().solve_object()(e1, e2, std::back_inserter(solutions)); // to be optimized typedef typename CK::Circular_arc_point_2 Circular_arc_point_2; for ( typename solutions_container::iterator it = solutions.begin(); it != solutions.end(); ++it ) { *res++ = make_object (std::make_pair(Circular_arc_point_2(it->first), it->second )); } return res; }} // namespace LinearFunctors} // namespace CGAL#endif // CGAL_CIRCULAR_KERNEL_FUNCTIONS_ON_LINE_2_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -