📄 internal_functions_on_circle_2.h
字号:
// Copyright (c) 2003-2006 INRIA Sophia-Antipolis (France).// All rights reserved.//// This file is part of CGAL (www.cgal.org); you may redistribute it under// the terms of the Q Public License version 1.0.// See the file LICENSE.QPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Circular_kernel_2/include/CGAL/Circular_kernel_2/internal_functions_on_circle_2.h $// $Id: internal_functions_on_circle_2.h 33935 2006-09-07 12:26:01Z afabri $//// Author(s) : Monique Teillaud, Sylvain Pion// Partially supported by the IST Programme of the EU as a Shared-cost// RTD (FET Open) Project under Contract No IST-2000-26473 // (ECG - Effective Computational Geometry for Curves and Surfaces) // and a STREP (FET Open) Project under Contract No IST-006413 // (ACS -- Algorithms for Complex Shapes)#ifndef CGAL_CIRCULAR_KERNEL_INTERNAL_FUNCTIONS_ON_CIRCLE_2_H#define CGAL_CIRCULAR_KERNEL_INTERNAL_FUNCTIONS_ON_CIRCLE_2_HCGAL_BEGIN_NAMESPACE// temporary function : where to put it, if we want to keep it ?template< class CK>typename CK::Circular_arc_point_2circle_intersect( const typename CK::Circle_2 & c1, const typename CK::Circle_2 & c2, bool b ){ typedef std::vector<CGAL::Object > solutions_container; solutions_container solutions; CGAL::intersect_2<CK>( c1, c2, std::back_inserter(solutions) ); typename solutions_container::iterator it = solutions.begin(); CGAL_kernel_precondition( it != solutions.end() ); // the circles intersect const std::pair<typename CK::Circular_arc_point_2, unsigned> *result; result = CGAL::object_cast< std::pair<typename CK::Circular_arc_point_2, unsigned> > (&(*it)); if ( result->second == 2 ) // double solution return result->first; if (b) return result->first; ++it; result = CGAL::object_cast< std::pair<typename CK::Circular_arc_point_2, unsigned> >(&(*it)); return result->first;}namespace CircularFunctors { template < class CK > typename CK::Polynomial_for_circles_2_2 get_equation( const typename CK::Circle_2 & c ) { typedef typename CK::RT RT; typedef typename CK::Algebraic_kernel AK; return AK().construct_polynomial_for_circles_2_2_object() ( c.center().x(), c.center().y(), c.squared_radius() ); } template < class CK > typename CK::Circle_2 construct_circle_2( const typename CK::Polynomial_for_circles_2_2 &eq ) { return typename CK::Circle_2( typename CK::Point_2(eq.a(), eq.b()), eq.r_sq() ); } template < class CK > bool has_on(const typename CK::Circle_2 &a, const typename CK::Circular_arc_point_2 &p) { typedef typename CK::Algebraic_kernel AK; typedef typename CK::Polynomial_for_circles_2_2 Polynomial_for_circles_2_2; Polynomial_for_circles_2_2 equation = CircularFunctors::get_equation<CK>(a); return (AK().sign_at_object()(equation,p.coordinates()) == ZERO); } template < class CK > inline bool non_oriented_equal(const typename CK::Circle_2 & c1, const typename CK::Circle_2 & c2) { if(identical(c1,c2)) return true; return (c1.squared_radius() == c2.squared_radius()) && (c1.center() == c2.center()); } template < class CK > inline typename CK::Linear_kernel::Bounded_side bounded_side(const typename CK::Circle_2 &c, const typename CK::Circular_arc_point_2 &p) { typedef typename CK::Algebraic_kernel AK; typedef typename CK::Polynomial_for_circles_2_2 Equation; Equation equation = get_equation<CK>(c); Sign sign = AK().sign_at_object()(equation,p.rep().coordinates()); if(sign == NEGATIVE) return ON_BOUNDED_SIDE; else if(sign == POSITIVE) return ON_UNBOUNDED_SIDE; else return ON_BOUNDARY; } template< class CK, class OutputIterator> OutputIterator intersect_2( const typename CK::Circle_2 & c1, const typename CK::Circle_2 & c2, OutputIterator res ) { typedef typename CK::Algebraic_kernel AK; typedef typename CK::Polynomial_for_circles_2_2 Equation; typedef typename CK::Root_for_circles_2_2 Root_for_circles_2_2; Equation e1 = CircularFunctors::get_equation<CK>(c1); Equation e2 = CircularFunctors::get_equation<CK>(c2); if (e1 == e2) { *res++ = make_object(e1); return res; } typedef std::vector< std::pair < Root_for_circles_2_2, unsigned > > solutions_container; solutions_container solutions; AK().solve_object()(e1, e2, std::back_inserter(solutions)); // to be optimized typedef typename CK::Circular_arc_point_2 Circular_arc_point_2; for ( typename solutions_container::iterator it = solutions.begin(); it != solutions.end(); ++it ) { *res++ = make_object(std::make_pair(Circular_arc_point_2(it->first), it->second )); } return res; } // Should we have an iterator based interface, or both ? template <class CK> typename CK::Circular_arc_point_2 x_extremal_point(const typename CK::Circle_2 & c, bool i) { typedef typename CK::Algebraic_kernel AK; return AK().x_critical_points_object()(typename CK::Get_equation()(c),i); } template <class CK,class OutputIterator> OutputIterator x_extremal_points(const typename CK::Circle_2 & c, OutputIterator res) { typedef typename CK::Algebraic_kernel AK; return AK().x_critical_points_object()(typename CK::Get_equation()(c),res); } template <class CK> typename CK::Circular_arc_point_2 y_extremal_point(const typename CK::Circle_2 & c, bool i) { typedef typename CK::Algebraic_kernel AK; return AK().y_critical_points_object()(typename CK::Get_equation()(c),i); } template <class CK,class OutputIterator> OutputIterator y_extremal_points(const typename CK::Circle_2 & c, OutputIterator res) { typedef typename CK::Algebraic_kernel AK; return AK().y_critical_points_object()(typename CK::Get_equation()(c),res); }} // namespace CircularFunctorsCGAL_END_NAMESPACE#endif // CGAL_CIRCULAR_KERNEL_INTERNAL_FUNCTIONS_ON_CIRCLE_2_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -