⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 internal_functions_on_circle_2.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2003-2006  INRIA Sophia-Antipolis (France).// All rights reserved.//// This file is part of CGAL (www.cgal.org); you may redistribute it under// the terms of the Q Public License version 1.0.// See the file LICENSE.QPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Circular_kernel_2/include/CGAL/Circular_kernel_2/internal_functions_on_circle_2.h $// $Id: internal_functions_on_circle_2.h 33935 2006-09-07 12:26:01Z afabri $//// Author(s)     : Monique Teillaud, Sylvain Pion// Partially supported by the IST Programme of the EU as a Shared-cost// RTD (FET Open) Project under Contract No  IST-2000-26473 // (ECG - Effective Computational Geometry for Curves and Surfaces) // and a STREP (FET Open) Project under Contract No  IST-006413 // (ACS -- Algorithms for Complex Shapes)#ifndef CGAL_CIRCULAR_KERNEL_INTERNAL_FUNCTIONS_ON_CIRCLE_2_H#define CGAL_CIRCULAR_KERNEL_INTERNAL_FUNCTIONS_ON_CIRCLE_2_HCGAL_BEGIN_NAMESPACE// temporary function : where to put it, if we want to keep it ?template< class CK>typename CK::Circular_arc_point_2circle_intersect( const typename CK::Circle_2 & c1,		  const typename CK::Circle_2 & c2,		  bool b ){  typedef std::vector<CGAL::Object > solutions_container;  solutions_container solutions;    CGAL::intersect_2<CK>( c1, c2, std::back_inserter(solutions) );    typename solutions_container::iterator it = solutions.begin();    CGAL_kernel_precondition( it != solutions.end() );   // the circles intersect    const std::pair<typename CK::Circular_arc_point_2, unsigned> *result;  result = CGAL::object_cast<     std::pair<typename CK::Circular_arc_point_2, unsigned> > (&(*it));    if ( result->second == 2 ) // double solution    return result->first;    if (b)     return result->first;    ++it;  result = CGAL::object_cast<     std::pair<typename CK::Circular_arc_point_2, unsigned> >(&(*it));    return result->first;}namespace CircularFunctors {    template < class CK >  typename CK::Polynomial_for_circles_2_2  get_equation( const typename CK::Circle_2 & c )  {    typedef typename CK::RT RT;     typedef typename CK::Algebraic_kernel   AK;        return AK().construct_polynomial_for_circles_2_2_object()      ( c.center().x(), c.center().y(), c.squared_radius() );  }    template < class CK >  typename CK::Circle_2    construct_circle_2( const typename CK::Polynomial_for_circles_2_2 &eq )  {    return typename       CK::Circle_2( typename CK::Point_2(eq.a(), eq.b()), eq.r_sq() );   }  template < class CK >  bool  has_on(const typename CK::Circle_2 &a,	 const typename CK::Circular_arc_point_2 &p)  {    typedef typename CK::Algebraic_kernel            AK;    typedef typename CK::Polynomial_for_circles_2_2 Polynomial_for_circles_2_2;    Polynomial_for_circles_2_2 equation = CircularFunctors::get_equation<CK>(a);        return (AK().sign_at_object()(equation,p.coordinates()) == ZERO);  }  template < class CK >  inline bool  non_oriented_equal(const typename CK::Circle_2 & c1,	             const typename CK::Circle_2 & c2) {    if(identical(c1,c2)) return true;    return (c1.squared_radius() == c2.squared_radius()) &&           (c1.center() == c2.center());  }  template < class CK >  inline  typename CK::Linear_kernel::Bounded_side  bounded_side(const typename CK::Circle_2 &c,               const typename CK::Circular_arc_point_2 &p) {    typedef typename CK::Algebraic_kernel AK;    typedef typename CK::Polynomial_for_circles_2_2 Equation;    Equation equation = get_equation<CK>(c);    Sign sign = AK().sign_at_object()(equation,p.rep().coordinates());    if(sign == NEGATIVE) return ON_BOUNDED_SIDE;    else if(sign == POSITIVE) return ON_UNBOUNDED_SIDE;    else return ON_BOUNDARY;  }  template< class CK, class OutputIterator>  OutputIterator  intersect_2( const typename CK::Circle_2 & c1,	       const typename CK::Circle_2 & c2,	       OutputIterator res )  {    typedef typename CK::Algebraic_kernel            AK;    typedef typename CK::Polynomial_for_circles_2_2  Equation;     typedef typename CK::Root_for_circles_2_2        Root_for_circles_2_2;    Equation e1 = CircularFunctors::get_equation<CK>(c1);    Equation e2 = CircularFunctors::get_equation<CK>(c2);        if (e1 == e2) {      *res++ = make_object(e1);      return res;    }    typedef std::vector< std::pair < Root_for_circles_2_2, unsigned > >       solutions_container;    solutions_container solutions;        AK().solve_object()(e1, e2, std::back_inserter(solutions));     // to be optimized    typedef typename CK::Circular_arc_point_2 Circular_arc_point_2;        for ( typename solutions_container::iterator it = solutions.begin(); 	  it != solutions.end(); ++it )      {        *res++ = make_object(std::make_pair(Circular_arc_point_2(it->first),					    it->second ));      }    return res;  }  // Should we have an iterator based interface, or both ?  template <class CK>  typename CK::Circular_arc_point_2  x_extremal_point(const typename CK::Circle_2 & c, bool i)  {    typedef typename CK::Algebraic_kernel   AK;    return AK().x_critical_points_object()(typename CK::Get_equation()(c),i);  }  template <class CK,class OutputIterator>  OutputIterator  x_extremal_points(const typename CK::Circle_2 & c, OutputIterator res)  {    typedef typename CK::Algebraic_kernel   AK;    return AK().x_critical_points_object()(typename CK::Get_equation()(c),res);  }  template <class CK>  typename CK::Circular_arc_point_2  y_extremal_point(const typename CK::Circle_2 & c, bool i)  {    typedef typename CK::Algebraic_kernel   AK;    return AK().y_critical_points_object()(typename CK::Get_equation()(c),i);  }    template <class CK,class OutputIterator>  OutputIterator  y_extremal_points(const typename CK::Circle_2 & c, OutputIterator res)  {    typedef typename CK::Algebraic_kernel   AK;    return AK().y_critical_points_object()(typename CK::Get_equation()(c),res);  }} // namespace CircularFunctorsCGAL_END_NAMESPACE#endif // CGAL_CIRCULAR_KERNEL_INTERNAL_FUNCTIONS_ON_CIRCLE_2_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -