⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rotation_tree_2.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2000  Max-Planck-Institute Saarbruecken (Germany).// All rights reserved.//// This file is part of CGAL (www.cgal.org); you may redistribute it under// the terms of the Q Public License version 1.0.// See the file LICENSE.QPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Partition_2/include/CGAL/Partition_2/Rotation_tree_2.h $// $Id: Rotation_tree_2.h 31311 2006-05-29 08:30:22Z wein $// //// Author(s)     : Susan Hert <hert@mpi-sb.mpg.de>/*    A rotation tree for computing the vertex visibility graph of a set of    non-intersecting segments in the plane (e.g. edges of a polygon).    Let $V$ be the set of segment endpoints and    let $p_{\infinity}$ ($p_{-\infinity}$) be a point with $y$ coordinate    $\infinity$ ($-\infinity$) and $x$ coordinate larger than all points    in $V$. The tree $G$ is a tree with node set    $V \cup \{p_{\infinity}, p_{-\infinity}\}$.  Every node (except the one    corresponding to $p_{\infinity}$) has exactly one outgoing edge to the    point $q$ with the following property:  $q$ is the first point encountered    when looking from $p$ in direction $d$ and rotating counterclockwise. */#ifndef  CGAL_ROTATION_TREE_H#define  CGAL_ROTATION_TREE_H//  MSVC6 doesn't work with the CGALi::vector but it does with the std::vector//  (from stlport?)#if (defined( _MSC_VER) && (_MSC_VER <= 1200)) || defined(__BORLANDC__)#include <vector>#else#include <CGAL/vector.h>#endif // MSVC6#include <CGAL/Partition_2/Rotation_tree_node_2.h>#include <CGAL/functional.h>namespace CGAL {template <class Traits_>#if (defined( _MSC_VER) && (_MSC_VER <= 1200)) || defined(__BORLANDC__)class Rotation_tree_2 : public std::vector< Rotation_tree_node_2<Traits_> >#elseclass Rotation_tree_2 : public CGALi::vector< Rotation_tree_node_2<Traits_> >#endif // MSVC 6{public:   typedef Traits_                                 Traits;   typedef Rotation_tree_node_2<Traits>            Node;#if (defined( _MSC_VER) && (_MSC_VER <= 1200)) || defined(__BORLANDC__)   typedef typename std::vector<Node>::iterator    Self_iterator;#else   typedef typename CGALi::vector<Node>::iterator  Self_iterator;#endif // MSVC6   typedef typename Traits::Point_2                Point_2;   // constructor   template<class ForwardIterator>   Rotation_tree_2(ForwardIterator first, ForwardIterator beyond)   {      for (ForwardIterator it = first; it != beyond; it++)         push_back(*it);         std::sort(this->begin(), this->end(), swap_1(Traits().less_xy_2_object()));      std::unique(this->begin(), this->end());         // front() is the point with the largest x coordinate         // push the point p_minus_infinity; the coordinates should never be used      push_back(Point_2( 1, -1));      // push the point p_infinity; the coordinates should never be used      push_back(Point_2(1, 1));         _p_inf = this->end();  // record the iterators to these extreme points      _p_inf--;      _p_minus_inf = _p_inf;      _p_minus_inf--;         Self_iterator child;      // make p_minus_inf a child of p_inf      set_rightmost_child(_p_minus_inf, _p_inf);       child = this->begin();               // now points to p_0      while (child != _p_minus_inf)  // make all points children of p_minus_inf      {         set_rightmost_child(child, _p_minus_inf);         child++;      }   }   // the point that comes first in the right-to-left ordering is first   // in the ordering, after the auxilliary points p_minus_inf and p_inf   Self_iterator rightmost_point_ref()    {      return this->begin();   }   Self_iterator right_sibling(Self_iterator p)    {      if (!(*p).has_right_sibling()) return this->end();      return (*p).right_sibling();   }   Self_iterator left_sibling(Self_iterator p)    {      if (!(*p).has_left_sibling()) return this->end();      return (*p).left_sibling();   }   Self_iterator rightmost_child(Self_iterator p)    {      if (!(*p).has_children()) return this->end();      return (*p).rightmost_child();   }   Self_iterator parent(Self_iterator p)    {      if (!(*p).has_parent()) return this->end();      return (*p).parent();   }   bool parent_is_p_infinity(Self_iterator p)    {      return parent(p) == _p_inf;   }   bool parent_is_p_minus_infinity(Self_iterator p)    {      return parent(p) == _p_minus_inf;   }   // makes *p the parent of *q   void set_parent (Self_iterator p, Self_iterator q)   {      CGAL_assertion(q != this->end());      if (p == this->end())         (*q).clear_parent();      else         (*q).set_parent(p);   }   // makes *p the rightmost child of *q   void set_rightmost_child(Self_iterator p, Self_iterator q);   // makes *p the left sibling of *q   void set_left_sibling(Self_iterator p, Self_iterator q);   // makes *p the right sibling of *q   void set_right_sibling(Self_iterator p, Self_iterator q);   // NOTE:  this function does not actually remove the node p from the   //        list; it only reorganizes the pointers so this node is not   //        in the tree structure anymore   void erase(Self_iterator p);private:   Self_iterator _p_inf;   Self_iterator _p_minus_inf;};}#include <CGAL/Partition_2/Rotation_tree_2_impl.h>#endif // CGAL_ROTATION_TREE_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -