📄 vertex_visibility_graph_2_impl.h
字号:
// Copyright (c) 2000 Max-Planck-Institute Saarbruecken (Germany).// All rights reserved.//// This file is part of CGAL (www.cgal.org); you may redistribute it under// the terms of the Q Public License version 1.0.// See the file LICENSE.QPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Partition_2/include/CGAL/Partition_2/Vertex_visibility_graph_2_impl.h $// $Id: Vertex_visibility_graph_2_impl.h 31311 2006-05-29 08:30:22Z wein $// //// Author(s) : Susan Hert <hert@mpi-sb.mpg.de>namespace CGAL {/*// ??? need to finish this ???template <class Traits>template <class ForwardIterator>bool Vertex_visibility_graph_2<Traits>::is_valid(ForwardIterator first, ForwardIterator beyond){ std::vector<Point_2> vertices(first, beyond); bool edge_there[vertices.size()]; // for each edge in the graph determine if it is either an edge of the // polygon or, if not, if it intersects the polygon in the interior of the // edge. for (iterator e_it = edges.begin(); e_it != edges.end(); e_it++) { Segment_2 s = construct_segment_2((*e_it).first, (*e_it).second); if (is_an_edge(*e_it)) edge_there[edge_num] = true; else if (do_intersect_in_interior(s, first, beyond)) return false; } // check if all the edges of the polygon are present // // ??? how do you check if there are missing edges ???}*/// want to determine, for each vertex p of the polygon, the line segment// immediately below it. For vertical edges, the segment below is not the// one that begins at the other endpoint of the edge.template <class Traits>void Vertex_visibility_graph_2<Traits>::initialize_vertex_map( const Polygon& polygon, Vertex_map& vertex_map){ typedef typename Vertex_map::value_type Map_pair; // Create an event list that is a list of circulators for the polygon Iterator_list<Polygon_const_iterator> iterator_list(polygon.begin(), polygon.end()); // Sort the event list (iterators to points) from left to right // (using less_xy)#ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES iterator_list.sort(&Self::compare);#else iterator_list.sort(Indirect_less_xy_2<Traits>());#endif // Create an ordered list of edge endpoints (iterators), initially empty typedef std::set< Point_pair, Segment_less_yx_2 > Ordered_edge_set; typedef typename Ordered_edge_set::iterator Ordered_edge_set_iterator; Ordered_edge_set ordered_edges; Ordered_edge_set_iterator edge_it; Vertex_map_iterator vm_it; Vertex_map_iterator vis_it; Polygon_const_iterator event_it; Polygon_const_iterator next_endpt; Polygon_const_iterator prev_endpt; // initialize the map by associating iterators and points and indicating // that no points can see anything. for (Polygon_const_iterator it = polygon.begin();it != polygon.end();it++) { vertex_map.insert(Map_pair(*it, Iterator_pair(it, polygon.end()))); } // now go through the events in sorted order. while (!iterator_list.empty()) { event_it = iterator_list.front();#ifdef CGAL_VISIBILITY_GRAPH_DEBUG std::cout << "event = " << *event_it << std::endl; #endif next_endpt = event_it; next_endpt++; if (next_endpt == polygon.end()) next_endpt = polygon.begin(); iterator_list.pop_front(); // the first edge that is not less than (below) this edge, so ... edge_it = ordered_edges.lower_bound(Point_pair(*event_it,*next_endpt)); // ...if there is no edge below this one then nothing is visible, // otherwise.... if (edge_it != ordered_edges.begin()) { edge_it--; // ...the first visible edge is the previous edge // find the event point in the vertex map vm_it = vertex_map.find(*event_it); // Find the entry for the edge's first endpoint in the vertex map. vis_it = vertex_map.find((*edge_it).first);#ifdef CGAL_VISIBILITY_GRAPH_DEBUG std::cout << "the potential visibility point is " << (*vis_it).first << endl;#endif // an edge that ends at this event point cannot be below this // endpoint if (!is_next_to(polygon, (*vis_it).second.first, event_it)) {#ifdef CGAL_VISIBILITY_GRAPH_DEBUG cout << "the edge beginning at " << *(*vis_it).second.first << " is visible" << endl;#endif // set the visibility iterator for this point to the iterator // corresponding to the edge endpoint that is to the left of // the vertical line if (less_xy_2((*vis_it).first, (*vm_it).first)) { Polygon_const_iterator next_vtx = (*vis_it).second.first; next_vtx++; if (next_vtx == polygon.end()) next_vtx = polygon.begin(); (*vm_it).second.second = next_vtx; } else (*vm_it).second.second = (*vis_it).second.first; } // skip over the edge that ends at this event point. If there // is another edge above this event's edge then it is visible. // since it can't also end at the event point. else if (edge_it != ordered_edges.begin() && --edge_it != ordered_edges.begin()) { vis_it = vertex_map.find((*edge_it).first);#ifdef CGAL_VISIBILITY_GRAPH_DEBUG std::cout << "the edge beginning at " << *(*vis_it).second.first << " is visible" << endl;#endif // set the visibility iterator for this point to the iterator // corresponding to the edge endpoint that is to the left of // the vertical line if (less_xy_2((*vis_it).first, (*vm_it).first)) { Polygon_const_iterator next_vtx = (*vis_it).second.first; next_vtx++; if (next_vtx == polygon.end()) next_vtx = polygon.begin(); (*vm_it).second.second = next_vtx; } else (*vm_it).second.second = (*vis_it).second.first; }#ifdef CGAL_VISIBILITY_GRAPH_DEBUG else std::cout << "nothing is visible " << endl;#endif }#ifdef CGAL_VISIBILITY_GRAPH_DEBUG else cout << "nothing is visible " << endl;#endif prev_endpt = event_it; if (prev_endpt == polygon.begin()) prev_endpt = polygon.end(); prev_endpt--; // if the other endpoint of the next edge is to the right of the // sweep line, then insert this edge if (less_xy_2(*event_it, *next_endpt)) { ordered_edges.insert(Point_pair(*event_it,*next_endpt));#ifdef CGAL_VISIBILITY_GRAPH_DEBUG cout << "inserting edge from " << *event_it << " to " << *next_endpt << endl;#endif } else // other endpoint not to the right, so erase it { ordered_edges.erase(Point_pair(*event_it,*next_endpt));#ifdef CGAL_VISIBILITY_GRAPH_DEBUG std::cout << "erasing edge from " << *event_it << " to " << *next_endpt << endl;#endif } // if the other endpoint of the previous edge is to the right of the // sweep line, insert it if (less_xy_2(*event_it, *prev_endpt)) { ordered_edges.insert(Point_pair(*prev_endpt,*event_it));#ifdef CGAL_VISIBILITY_GRAPH_DEBUG cout << "inserting edge from " << *prev_endpt << " to " << *event_it << endl;#endif } else // other endpoint is not to the right, so erase it { ordered_edges.erase(Point_pair(*prev_endpt,*event_it));#ifdef CGAL_VISIBILITY_GRAPH_DEBUG std::cout << "erasing edge from " << *prev_endpt << " to " << *event_it << endl;#endif } }}// determines if one makes a left turn going from p to q to q's parent.// if q's parent is p_infinity, then a left turn is made when p's x value// is less than q's x value or the x values are the same and p's y value is// less than q's.// if p, q, and q's parent are collinear, then one makes a "left turn"// if q is between p and q's parent (since this means that p can't see // q's parent and thus should not become a child of that node)template <class Traits>bool Vertex_visibility_graph_2<Traits>::left_turn_to_parent( Tree_iterator p, Tree_iterator q, Tree& tree){ if (tree.parent_is_p_infinity(q)) { return (less_xy_2(*p, *q)); } else if (orientation_2(*p, *q, *(*q).parent()) == COLLINEAR && (collinear_ordered_2(*p, *q, *(*q).parent()) || collinear_ordered_2(*p, *q, *(*q).parent()))) { return true; } else { return left_turn_2(*p, *q, *(*q).parent()); }}// returns true if the diagonal from p to q cuts the interior angle at ptemplate <class Traits>bool Vertex_visibility_graph_2<Traits>::diagonal_in_interior( const Polygon& polygon, Polygon_const_iterator p, Polygon_const_iterator q){ Turn_reverser<Point_2, Left_turn_2> right_turn(left_turn_2); Polygon_const_iterator before_p; if (p == polygon.begin()) before_p = polygon.end(); else before_p = p; before_p--; Polygon_const_iterator after_p = p; after_p++; if (after_p == polygon.end()) after_p = polygon.begin(); if (right_turn(*before_p, *p, *after_p)) { if (right_turn(*before_p, *p, *q) && right_turn(*q, *p, *after_p)) return false; } else // left turn or straight at vertex {/* // p should not be able to see q through its own edge if (are_strictly_ordered_along_line(*p, *after_p, *q)) return false;*/ if (right_turn(*before_p, *p, *q) || right_turn(*q, *p, *after_p)) return false; } return true;} // returns true if the looker can see the point_to_see template <class Traits>bool Vertex_visibility_graph_2<Traits>::point_is_visible( const Polygon& polygon, Polygon_const_iterator point_to_see, Vertex_map_iterator looker){ // Collect pointers to the current visibility segments for the looker // (the current visibility point and the two vertices flanking this vertex) Polygon_const_iterator vis_endpt = (*looker).second.second; Polygon_const_iterator next_vis_endpt = vis_endpt; next_vis_endpt++; if (next_vis_endpt == polygon.end()) next_vis_endpt = polygon.begin(); Polygon_const_iterator prev_vis_endpt; if (vis_endpt == polygon.begin()) prev_vis_endpt = polygon.end(); else prev_vis_endpt = vis_endpt; prev_vis_endpt--;#ifdef CGAL_VISIBILITY_GRAPH_DEBUG cout << "looker is " << (*looker).first << " point to see is " << *point_to_see; cout << " visibility points are prev: " << *prev_vis_endpt << " vis: " << *vis_endpt << " next: " << *next_vis_endpt << endl;#endif // if the point to see is the current visibility point or if the looker // and the point to see flank the old visibility point, they are visible // to each other since it is known at this point that the edge from // the looker to the point to see goes through the interior of the polygon if ((*looker).second.second == point_to_see) {#ifdef CGAL_VISIBILITY_GRAPH_DEBUG std::cout << "looker sees point" << std::endl;#endif return true; } else if (((*looker).second.first == prev_vis_endpt && point_to_see == next_vis_endpt) || ((*looker).second.first == next_vis_endpt && point_to_see == prev_vis_endpt)) { if (orientation_2(*prev_vis_endpt, *vis_endpt, *next_vis_endpt) == COLLINEAR && (collinear_ordered_2((*looker).first, *vis_endpt, *point_to_see) || collinear_ordered_2(*point_to_see, *vis_endpt, (*looker).first))) {#ifdef CGAL_VISIBILITY_GRAPH_DEBUG cout << "looker does NOT see point" << endl;#endif return false; } else {#ifdef CGAL_VISIBILITY_GRAPH_DEBUG cout << "looker sees point" << endl;#endif return true; } } else if ((*looker).second.first == prev_vis_endpt || point_to_see == prev_vis_endpt) // point to see or looker is not adjacent to old visibility, so check // intersection with next visibility segment { if (orientation_2(*vis_endpt, *next_vis_endpt, (*looker).first) != orientation_2(*vis_endpt, *next_vis_endpt, *point_to_see) && orientation_2((*looker).first, *point_to_see, *vis_endpt) != orientation_2((*looker).first, *point_to_see, *next_vis_endpt)) {#ifdef CGAL_VISIBILITY_GRAPH_DEBUG cout << "looker does NOT see point" << endl;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -