⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vector_3.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2000  Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel).  All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Cartesian_kernel/include/CGAL/Cartesian/Vector_3.h $// $Id: Vector_3.h 33152 2006-08-08 15:38:23Z spion $// //// Author        : Andreas Fabri#ifndef CGAL_CARTESIAN_VECTOR_3_H#define CGAL_CARTESIAN_VECTOR_3_H#include <CGAL/Origin.h>#include <CGAL/Threetuple.h>CGAL_BEGIN_NAMESPACEtemplate < class R_ >class VectorC3{  typedef typename R_::FT                   FT;  typedef typename R_::Point_3              Point_3;  typedef typename R_::Vector_3             Vector_3;  typedef typename R_::Ray_3                Ray_3;  typedef typename R_::Segment_3            Segment_3;  typedef typename R_::Line_3               Line_3;  typedef typename R_::Direction_3          Direction_3;  typedef Threetuple<FT>                           Rep;  typedef typename R_::template Handle<Rep>::type  Base;  Base base;public:  typedef R_                                     R;  VectorC3() {}  VectorC3(const Null_vector &n)  { *this = R().construct_vector_3_object()(n); }  VectorC3(const Point_3 &a, const Point_3 &b)  { *this = R().construct_vector_3_object()(a, b); }  VectorC3(const Segment_3 &s)  { *this = R().construct_vector_3_object()(s); }  VectorC3(const Ray_3 &r)  { *this = R().construct_vector_3_object()(r); }  VectorC3(const Line_3 &l)  { *this = R().construct_vector_3_object()(l); }  VectorC3(const FT &x, const FT &y, const FT &z)    : base(x, y, z) {}  VectorC3(const FT &x, const FT &y, const FT &z, const FT &w)  {    if (w != FT(1))      base = Rep(x/w, y/w, z/w);    else      base = Rep(x, y, z);  }  const FT & x() const  {      return get(base).e0;  }  const FT & y() const  {      return get(base).e1;  }  const FT & z() const  {      return get(base).e2;  }  const FT & hx() const  {      return x();  }  const FT & hy() const  {      return y();  }  const FT & hz() const  {      return z();  }  const FT & hw() const  {      return constant<FT, 1>();  }  const FT & cartesian(int i) const;  const FT & operator[](int i) const;  const FT & homogeneous(int i) const;  int dimension() const  {      return 3;  }  Vector_3 operator+(const VectorC3 &w) const;  Vector_3 operator-(const VectorC3 &w) const;  Vector_3 operator-() const;  Vector_3 operator/(const FT &c) const;  FT squared_length() const;  Direction_3 direction() const;};template < class R >inlinebooloperator==(const VectorC3<R> &v, const VectorC3<R> &w){  return w.x() == v.x() && w.y() == v.y() && w.z() == v.z();}template < class R >inlinebooloperator!=(const VectorC3<R> &v, const VectorC3<R> &w){  return !(v == w);}template < class R >inlinebooloperator==(const VectorC3<R> &v, const Null_vector &) {  return CGAL_NTS is_zero(v.x()) && CGAL_NTS is_zero(v.y()) &&         CGAL_NTS is_zero(v.z());}template < class R >inlinebooloperator==(const Null_vector &n, const VectorC3<R> &v) {  return v == n;}template < class R >inlinebooloperator!=(const VectorC3<R> &v, const Null_vector &n){  return !(v == n);}template < class R >inlinebooloperator!=(const Null_vector &n, const VectorC3<R> &v){  return !(v == n);}template < class R >inlineconst typename VectorC3<R>::FT &VectorC3<R>::cartesian(int i) const{  CGAL_kernel_precondition( (i>=0) && (i<3) );  if (i==0) return x();  if (i==1) return y();  return z();}template < class R >inlineconst typename VectorC3<R>::FT &VectorC3<R>::operator[](int i) const{  return cartesian(i);}template < class R >const typename VectorC3<R>::FT &VectorC3<R>::homogeneous(int i) const{  if (i==3) return hw();  return cartesian(i);}template < class R >inlinetypename VectorC3<R>::Vector_3VectorC3<R>::operator+(const VectorC3<R> &w) const{  return VectorC3<R>(x() + w.x(), y() + w.y(), z() + w.z());}template < class R >inlinetypename VectorC3<R>::Vector_3VectorC3<R>::operator-(const VectorC3<R> &w) const{  return VectorC3<R>(x() - w.x(), y() - w.y(), z() - w.z());}template < class R >inlinetypename VectorC3<R>::Vector_3VectorC3<R>::operator-() const{  return R().construct_opposite_vector_3_object()(*this);}template < class R >inlinetypename VectorC3<R>::FTVectorC3<R>::squared_length() const{  return CGAL_NTS square(x()) + CGAL_NTS square(y()) + CGAL_NTS square(z());}template < class R >inlinetypename VectorC3<R>::Vector_3VectorC3<R>::operator/(const typename VectorC3<R>::FT &c) const{  return VectorC3<R>(x()/c, y()/c, z()/c);}template < class R >inlinetypename VectorC3<R>::Direction_3VectorC3<R>::direction() const{  return Direction_3(*this);}CGAL_END_NAMESPACE#endif // CGAL_CARTESIAN_VECTOR_3_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -