⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 plane_3.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2000  Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel).  All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Cartesian_kernel/include/CGAL/Cartesian/Plane_3.h $// $Id: Plane_3.h 33070 2006-08-06 16:06:39Z spion $// //// Author(s)     : Andreas Fabri#ifndef CGAL_CARTESIAN_PLANE_3_H#define CGAL_CARTESIAN_PLANE_3_H#include <CGAL/Fourtuple.h>#include <CGAL/Handle_for.h>CGAL_BEGIN_NAMESPACEtemplate <class R_>class PlaneC3{  typedef typename R_::FT                   FT;  typedef typename R_::Point_2              Point_2;  typedef typename R_::Point_3              Point_3;  typedef typename R_::Vector_3             Vector_3;  typedef typename R_::Direction_3          Direction_3;  typedef typename R_::Line_3               Line_3;  typedef typename R_::Ray_3                Ray_3;  typedef typename R_::Segment_3            Segment_3;  typedef typename R_::Plane_3              Plane_3;  typedef typename R_::Construct_point_3    Construct_point_3;  typedef typename R_::Construct_point_2    Construct_point_2;  typedef Fourtuple<FT>	                           Rep;  typedef typename R_::template Handle<Rep>::type  Base;  Base base;public:  typedef R_                                     R;  PlaneC3() {}  PlaneC3(const Point_3 &p, const Point_3 &q, const Point_3 &r)  { *this = plane_from_points(p, q, r); }  PlaneC3(const Point_3 &p, const Direction_3 &d)  { *this = plane_from_point_direction(p, d); }  PlaneC3(const Point_3 &p, const Vector_3 &v)  { *this = plane_from_point_direction(p, v.direction()); }  PlaneC3(const FT &a, const FT &b, const FT &c, const FT &d)    : base(a, b, c, d) {}  PlaneC3(const Line_3 &l, const Point_3 &p)  { *this = plane_from_points(l.point(),	                      l.point()+l.direction().to_vector(),			      p); }  PlaneC3(const Segment_3 &s, const Point_3 &p)  { *this = plane_from_points(s.start(), s.end(), p); }  PlaneC3(const Ray_3 &r, const Point_3 &p)  { *this = plane_from_points(r.start(), r.second_point(), p); }  bool         operator==(const PlaneC3 &p) const;  bool         operator!=(const PlaneC3 &p) const;  const FT & a() const  {      return get(base).e0;  }  const FT & b() const  {      return get(base).e1;  }  const FT & c() const  {      return get(base).e2;  }  const FT & d() const  {      return get(base).e3;  }  Line_3       perpendicular_line(const Point_3 &p) const;  Plane_3      opposite() const;  Point_3      point() const;  Point_3      projection(const Point_3 &p) const;  Vector_3     orthogonal_vector() const;  Direction_3  orthogonal_direction() const;  Vector_3     base1() const;  Vector_3     base2() const;  Point_3      to_plane_basis(const Point_3 &p) const;  Point_2      to_2d(const Point_3 &p) const;  Point_3      to_3d(const Point_2 &p) const;  Oriented_side oriented_side(const Point_3 &p) const;  bool         has_on_positive_side(const Point_3 &l) const;  bool         has_on_negative_side(const Point_3 &l) const;  bool         has_on(const Point_3 &p) const  {    return oriented_side(p) == ON_ORIENTED_BOUNDARY;  }  bool         has_on(const Line_3 &l) const  {    return has_on(l.point())       &&  has_on(l.point() + l.direction().to_vector());  }  bool         is_degenerate() const;};template < class R >CGAL_KERNEL_INLINEboolPlaneC3<R>::operator==(const PlaneC3<R> &p) const{  if (CGAL::identical(base, p.base))      return true;  return equal_plane(*this, p);}template < class R >inlineboolPlaneC3<R>::operator!=(const PlaneC3<R> &p) const{  return !(*this == p);}template < class R >inlinetypename PlaneC3<R>::Point_3PlaneC3<R>::point() const{  return point_on_plane(*this);}template < class R >inlinetypename PlaneC3<R>::Point_3PlaneC3<R>::projection(const typename PlaneC3<R>::Point_3 &p) const{  return projection_plane(p, *this);}template < class R >inlinetypename PlaneC3<R>::Vector_3PlaneC3<R>::orthogonal_vector() const{  return R().construct_orthogonal_vector_3_object()(*this);}template < class R >inlinetypename PlaneC3<R>::Direction_3PlaneC3<R>::orthogonal_direction() const{  return Direction_3(a(), b(), c());}template < class R >typename PlaneC3<R>::Vector_3PlaneC3<R>::base1() const{  return R().construct_base_vector_3_object()(*this, 1);}template < class R >typename PlaneC3<R>::Vector_3PlaneC3<R>::base2() const{  return R().construct_base_vector_3_object()(*this, 2);}template < class R >typename PlaneC3<R>::Point_3PlaneC3<R>::to_plane_basis(const typename PlaneC3<R>::Point_3 &p) const{  FT alpha, beta, gamma;  Construct_point_3 construct_point_3;  solve(base1(), base2(), orthogonal_vector(), p - point(),	alpha, beta, gamma);  return construct_point_3(alpha, beta, gamma);}template < class R >typename PlaneC3<R>::Point_2PlaneC3<R>::to_2d(const typename PlaneC3<R>::Point_3 &p) const{  FT alpha, beta, gamma;  Construct_point_2 construct_point_2;  solve(base1(), base2(), orthogonal_vector(), p - point(),	alpha, beta, gamma);  return construct_point_2(alpha, beta);}template < class R >inlinetypename PlaneC3<R>::Point_3PlaneC3<R>::to_3d(const typename PlaneC3<R>::Point_2 &p) const{  return R().construct_lifted_point_3_object()(*this, p);}template < class R >inlinetypename PlaneC3<R>::Line_3PlaneC3<R>::perpendicular_line(const typename PlaneC3<R>::Point_3 &p) const{  return Line_3(p, orthogonal_direction());}template < class R >inlinetypename PlaneC3<R>::Plane_3PlaneC3<R>::opposite() const{  return PlaneC3<R>(-a(), -b(), -c(), -d());}template < class R >inlineOriented_sidePlaneC3<R>::oriented_side(const typename PlaneC3<R>::Point_3 &p) const{  return side_of_oriented_plane(*this, p);}template < class R >inlineboolPlaneC3<R>::has_on_positive_side(const  typename PlaneC3<R>::Point_3 &p) const{  return oriented_side(p) == ON_POSITIVE_SIDE;}template < class R >inlineboolPlaneC3<R>::has_on_negative_side(const  typename PlaneC3<R>::Point_3 &p) const{  return oriented_side(p) == ON_NEGATIVE_SIDE;}template < class R >inlineboolPlaneC3<R>::is_degenerate() const{ // FIXME : predicate  return CGAL_NTS is_zero(a()) && CGAL_NTS is_zero(b()) &&         CGAL_NTS is_zero(c());}CGAL_END_NAMESPACE#endif // CGAL_CARTESIAN_PLANE_3_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -