⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tetrahedron_3.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2000  Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel).  All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Cartesian_kernel/include/CGAL/Cartesian/Tetrahedron_3.h $// $Id: Tetrahedron_3.h 35640 2006-12-27 23:25:47Z spion $// //// Author(s)     : Andreas Fabri#ifndef CGAL_CARTESIAN_TETRAHEDRON_3_H#define CGAL_CARTESIAN_TETRAHEDRON_3_H#include <CGAL/Fourtuple.h>#include <CGAL/Handle_for.h>#include <vector>#include <functional>CGAL_BEGIN_NAMESPACEtemplate <class R_>class TetrahedronC3{  typedef typename R_::FT                   FT;  typedef typename R_::Point_3              Point_3;  typedef typename R_::Plane_3              Plane_3;  typedef typename R_::Tetrahedron_3        Tetrahedron_3;  typedef Fourtuple<Point_3>                       Rep;  typedef typename R_::template Handle<Rep>::type  Base;  Base base;public:  typedef R_                                     R;  TetrahedronC3() {}  TetrahedronC3(const Point_3 &p, const Point_3 &q, const Point_3 &r,                const Point_3 &s)    : base(p, q, r, s) {}  const Point_3 &    vertex(int i) const;  const Point_3 &    operator[](int i) const;  bool       operator==(const TetrahedronC3 &t) const;  bool       operator!=(const TetrahedronC3 &t) const;  Orientation    orientation() const;  Oriented_side  oriented_side(const Point_3 &p) const;  Bounded_side   bounded_side(const Point_3 &p) const;  bool       has_on_boundary(const Point_3 &p) const;  bool       has_on_positive_side(const Point_3 &p) const;  bool       has_on_negative_side(const Point_3 &p) const;  bool       has_on_bounded_side(const Point_3 &p) const;  bool       has_on_unbounded_side(const Point_3 &p) const;  bool       is_degenerate() const;};template < class R >boolTetrahedronC3<R>::operator==(const TetrahedronC3<R> &t) const{  if (CGAL::identical(base, t.base))      return true;  if (orientation() != t.orientation())      return false;  std::vector< Point_3 > V1;  std::vector< Point_3 > V2;  typename std::vector< Point_3 >::iterator uniq_end1;  typename std::vector< Point_3 >::iterator uniq_end2;  int k;  for ( k=0; k < 4; k++) V1.push_back( vertex(k));  for ( k=0; k < 4; k++) V2.push_back( t.vertex(k));  typename R::Less_xyz_3 Less_object = R().less_xyz_3_object();  std::sort(V1.begin(), V1.end(), Less_object);  std::sort(V2.begin(), V2.end(), Less_object);  uniq_end1 = std::unique( V1.begin(), V1.end());  uniq_end2 = std::unique( V2.begin(), V2.end());  V1.erase( uniq_end1, V1.end());  V2.erase( uniq_end2, V2.end());  return V1 == V2;}template < class R >inlineboolTetrahedronC3<R>::operator!=(const TetrahedronC3<R> &t) const{  return !(*this == t);}template < class R >const typename TetrahedronC3<R>::Point_3 &TetrahedronC3<R>::vertex(int i) const{  if (i<0) i=(i%4)+4;  else if (i>3) i=i%4;  switch (i)    {    case 0: return get(base).e0;    case 1: return get(base).e1;    case 2: return get(base).e2;    default: return get(base).e3;    }}template < class R >inlineconst typename TetrahedronC3<R>::Point_3 &TetrahedronC3<R>::operator[](int i) const{  return vertex(i);}template < class R >OrientationTetrahedronC3<R>::orientation() const{  return R().orientation_3_object()(vertex(0), vertex(1),                                    vertex(2), vertex(3));}template < class R >Oriented_sideTetrahedronC3<R>::oriented_side(const typename TetrahedronC3<R>::Point_3 &p) const{  Orientation o = orientation();  if (o != ZERO)    return Oriented_side(o * bounded_side(p));  CGAL_kernel_assertion (!is_degenerate());  return ON_ORIENTED_BOUNDARY;}template < class R >Bounded_sideTetrahedronC3<R>::bounded_side(const typename TetrahedronC3<R>::Point_3 &p) const{  return R().bounded_side_3_object()               (static_cast<const typename R::Tetrahedron_3>(*this), p);}template < class R >inlineboolTetrahedronC3<R>::has_on_boundary  (const typename TetrahedronC3<R>::Point_3 &p) const{  return oriented_side(p) == ON_ORIENTED_BOUNDARY;}template < class R >inlineboolTetrahedronC3<R>::has_on_positive_side  (const typename TetrahedronC3<R>::Point_3 &p) const{  return oriented_side(p) == ON_POSITIVE_SIDE;}template < class R >inlineboolTetrahedronC3<R>::has_on_negative_side  (const typename TetrahedronC3<R>::Point_3 &p) const{  return oriented_side(p) == ON_NEGATIVE_SIDE;}template < class R >inlineboolTetrahedronC3<R>::has_on_bounded_side  (const typename TetrahedronC3<R>::Point_3 &p) const{  return bounded_side(p) == ON_BOUNDED_SIDE;}template < class R >inlineboolTetrahedronC3<R>::has_on_unbounded_side  (const typename TetrahedronC3<R>::Point_3 &p) const{  return bounded_side(p) == ON_UNBOUNDED_SIDE;}template < class R >inlineboolTetrahedronC3<R>::is_degenerate() const{  return orientation() == COPLANAR;}CGAL_END_NAMESPACE#endif // CGAL_CARTESIAN_TETRAHEDRON_3_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -