⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 incircle_c2.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2003,2004,2006  INRIA Sophia-Antipolis (France).// All rights reserved.//// This file is part of CGAL (www.cgal.org); you may redistribute it under// the terms of the Q Public License version 1.0.// See the file LICENSE.QPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Apollonius_graph_2/include/CGAL/Apollonius_graph_2/Incircle_C2.h $// $Id: Incircle_C2.h 35183 2006-11-15 16:23:37Z hemmer $// //// Author(s)     : Menelaos Karavelas <mkaravel@cse.nd.edu>#ifndef CGAL_APOLLONIUS_GRAPH_2_INCIRCLE_C2_H#define CGAL_APOLLONIUS_GRAPH_2_INCIRCLE_C2_H#include <CGAL/Apollonius_graph_2/basic.h>#include <CGAL/Apollonius_graph_2/Predicate_constructions_C2.h>#include <CGAL/Apollonius_graph_2/Bounded_side_of_ccw_circle_C2.h>CGAL_BEGIN_NAMESPACECGAL_APOLLONIUS_GRAPH_2_BEGIN_NAMESPACE//--------------------------------------------------------------------template< class K >class Sign_of_distance_from_bitangent_line_2{public:  typedef Bitangent_line_2<K>               Bitangent_line;  typedef typename K::Site_2                Site_2;  typedef Inverted_weighted_point_2<K>      Inverted_weighted_point;  typedef typename K::FT                    FT;  typedef typename K::Sign                  Sign;public:  inline Sign  operator()(const Bitangent_line& bl, const Site_2& q,	     const Field_with_sqrt_tag&) const    {#ifdef AG2_PROFILE_PREDICATES      ag2_predicate_profiler::distance_from_bitangent_counter++;#endif      FT a = bl.a1() + bl.a2() * CGAL::sqrt(bl.delta());      FT b = bl.b1() + bl.b2() * CGAL::sqrt(bl.delta());      FT c = bl.c1() + bl.c2() * CGAL::sqrt(bl.delta());      FT r = a * q.x() + b * q.y() + c - q.weight() * bl.d();      return CGAL::sign(r);    }  inline Sign  operator()(const Bitangent_line& bl, const Site_2& q,	     const Integral_domain_without_division_tag&) const    {#ifdef AG2_PROFILE_PREDICATES      ag2_predicate_profiler::distance_from_bitangent_counter++;#endif      FT A = bl.a1() * q.x() + bl.b1() * q.y() + bl.c1()	- q.weight() * bl.d();      FT B = bl.a2() * q.x() + bl.b2() * q.y() + bl.c2();      return sign_a_plus_b_x_sqrt_c(A, B, bl.delta());    }};//--------------------------------------------------------------------template< class K >class Sign_of_distance_from_CCW_circle_2{public:  typedef Bitangent_line_2<K>            Bitangent_line;  typedef Inverted_weighted_point_2<K>   Inverted_weighted_point;  typedef typename K::FT                 FT;  typedef typename K::Sign               Sign;public:  inline Sign  operator()(const Bitangent_line& bl,	     const Inverted_weighted_point& v,	     const Field_with_sqrt_tag&) const    {      FT a = bl.a1() + bl.a2() * CGAL::sqrt(bl.delta());      FT b = bl.b1() + bl.b2() * CGAL::sqrt(bl.delta());      FT c = bl.c1() + bl.c2() * CGAL::sqrt(bl.delta());      FT r = a * v.x() + b * v.y() + c * v.p() - v.weight() * bl.d();      return CGAL::sign(r);    }  inline Sign  operator()(const Bitangent_line& bl,	     const Inverted_weighted_point& v,	     const Integral_domain_without_division_tag&) const    {      FT A = bl.a1() * v.x() + bl.b1() * v.y() + bl.c1() * v.p()	- v.weight() * bl.d();      FT B = bl.a2() * v.x() + bl.b2() * v.y() + bl.c2() * v.p();      return sign_a_plus_b_x_sqrt_c(A, B, bl.delta());    }};template < class Weighted_point >class Weighted_point_less_than{public:  inline  bool operator()(const Weighted_point& p1,		  const Weighted_point& p2) const  {    if ( p1.x() == p2.x() ) {      return p1.y() < p2.y();    }    return p1.x() < p2.x();  }};template < class K, class MTag >class Vertex_conflict_2{public:  typedef K                                 Kernel;  typedef MTag                              Method_tag;  typedef typename K::Point_2               Point_2;  typedef typename K::Site_2                Site_2;  typedef Weighted_point_inverter_2<K>      Weighted_point_inverter;  typedef Inverted_weighted_point_2<K>      Inverted_weighted_point;  typedef Bitangent_line_2<K>               Bitangent_line;  typedef Voronoi_radius_2<K>               Voronoi_radius;  typedef typename K::FT                    FT;  typedef typename K::Orientation           Orientation;  typedef typename K::Sign                  Sign;  typedef typename K::Bounded_side          Bounded_side;  typedef Bounded_side_of_CCW_circle_2<K>   Bounded_side_of_CCW_circle;  typedef Sign_of_distance_from_bitangent_line_2<K>                                     Sign_of_distance_from_bitangent_line;  typedef Sign_of_distance_from_CCW_circle_2<K>                                         Sign_of_distance_from_CCW_circle;private:  inline Orientation  orientation(const Bitangent_line& l, const Point_2& p,	      const Field_with_sqrt_tag&) const    {      FT A = l.a1() * p.x() + l.b1() * p.y() + l.c1();      FT B = l.a2() * p.x() + l.b2() * p.y() + l.c2();      FT P = A + B * CGAL::sqrt(l.delta());      return CGAL::sign(P);    }  inline Orientation  orientation(const Bitangent_line& l, const Point_2& p,	      const Integral_domain_without_division_tag&) const    {      FT A = l.a1() * p.x() + l.b1() * p.y() + l.c1();      FT B = l.a2() * p.x() + l.b2() * p.y() + l.c2();      return sign_a_plus_b_x_sqrt_c(A, B, l.delta());    }    inline Orientation  orientation(const Bitangent_line& l,	      const Inverted_weighted_point& u) const    {      FT A = l.a1() * u.x() / u.p() + l.b1() * u.y() / u.p() + l.c1();      FT B = l.a2() * u.x() / u.p() + l.b2() * u.y() / u.p() + l.c2();      FT P = A + B * CGAL::sqrt(l.delta());      return CGAL::sign(P);    }public:  typedef Sign                result_type;  typedef Site_2              argument_type;  struct Arity {};  inline  Sign operator()(const Site_2& p1, const Site_2& p2,		  const Site_2& p3, const Site_2& q) const  {#ifdef AG2_PROFILE_PREDICATES    ag2_predicate_profiler::incircle_counter++;#endif    //    Method_tag tag;    Weighted_point_inverter inverter(p1);    Inverted_weighted_point u2 = inverter(p2);    Inverted_weighted_point u3 = inverter(p3);    Voronoi_radius vr_123(u2, u3);    Bounded_side bs = Bounded_side_of_CCW_circle()(vr_123, tag );    if ( bs != ON_UNBOUNDED_SIDE ) { return NEGATIVE; }    Inverted_weighted_point v = inverter(q);    Bitangent_line blinv_23(u2, u3);    Sign s = Sign_of_distance_from_CCW_circle()(blinv_23, v, tag);    return s;  }  inline  Sign operator()(const Site_2& p1, const Site_2& p2,		  const Site_2& q) const  {    Method_tag tag;    //    Bitangent_line bl_21(p2, p1);    Sign s = Sign_of_distance_from_bitangent_line()(bl_21, q, tag);    if ( s != ZERO ) { return s; }    Bitangent_line bl1_perp = bl_21.perpendicular(p1.point());    Bitangent_line bl2_perp = bl_21.perpendicular(p2.point());    Orientation o1 = orientation(bl1_perp, q.point(), tag);    Orientation o2 = orientation(bl2_perp, q.point(), tag);    CGAL_assertion( o1 != COLLINEAR || o2 != COLLINEAR );    if ( o1 == o2 ) { return POSITIVE; }    return NEGATIVE;  }  };//--------------------------------------------------------------------CGAL_APOLLONIUS_GRAPH_2_END_NAMESPACECGAL_END_NAMESPACE#endif // CGAL_APOLLONIUS_GRAPH_2_INCIRCLE_C2_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -