📄 orientation_2.h
字号:
// Copyright (c) 2003,2004,2006 INRIA Sophia-Antipolis (France).// All rights reserved.//// This file is part of CGAL (www.cgal.org); you may redistribute it under// the terms of the Q Public License version 1.0.// See the file LICENSE.QPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Apollonius_graph_2/include/CGAL/Apollonius_graph_2/Orientation_2.h $// $Id: Orientation_2.h 35183 2006-11-15 16:23:37Z hemmer $// //// Author(s) : Menelaos Karavelas <mkaravel@cse.nd.edu>#ifndef CGAL_APOLLONIUS_GRAPH_2_ORIENTATION_2_H#define CGAL_APOLLONIUS_GRAPH_2_ORIENTATION_2_H#include <CGAL/Apollonius_graph_2/basic.h>#include <CGAL/Apollonius_graph_2/Predicate_constructions_C2.h>//--------------------------------------------------------------------CGAL_BEGIN_NAMESPACECGAL_APOLLONIUS_GRAPH_2_BEGIN_NAMESPACEtemplate<class K, class MTag>class Orientation_2{public: typedef K Kernel; typedef MTag Method_tag; typedef typename K::Site_2 Site_2; typedef typename K::Point_2 Point_2; typedef typename K::Orientation Orientation; typedef Orientation result_type; typedef Arity_tag<3> Arity; typedef Site_2 argument_type;private: typedef Weighted_point_inverter_2<K> Weighted_point_inverter; typedef Inverted_weighted_point_2<K> Inverted_weighted_point; typedef Voronoi_circle_2<K> Voronoi_circle; typedef Bitangent_line_2<K> Bitangent_line; typedef typename Bitangent_line::FT FT;private: Orientation vv_orientation(const Voronoi_circle& vc, const Point_2& sp1, const Point_2& p1, const Point_2& p2, const Field_with_sqrt_tag&) const { FT a = vc.a1() + vc.a2() * CGAL::sqrt(vc.delta()); FT b = vc.b1() + vc.b2() * CGAL::sqrt(vc.delta()); FT det1 = a * (p2.y() - p1.y()) - b * (p2.x() - p1.x()); FT c = vc.c1() + vc.c2() * CGAL::sqrt(vc.delta()); FT det2 = det2x2_by_formula(p1.x() - sp1.x(), p1.y() - sp1.y(), p2.x() - sp1.x(), p2.y() - sp1.y()); return CGAL::sign(det1 + FT(2) * c * det2); } Orientation vv_orientation(const Voronoi_circle vc, const Point_2& sp1, const Point_2& p1, const Point_2& p2, const Integral_domain_without_division_tag&) const { FT dx = p2.x() - p1.x(); FT dy = p2.y() - p1.y(); FT det1 = det2x2_by_formula(p1.x() - sp1.x(), p1.y() - sp1.y(), p2.x() - sp1.x(), p2.y() - sp1.y()); FT A = vc.a1() * dy - vc.b1() * dx + FT(2) * vc.c1() * det1; FT B = vc.a2() * dy - vc.b2() * dx + FT(2) * vc.c2() * det1; return sign_a_plus_b_x_sqrt_c(A, B, vc.delta()); }public: inline Orientation operator()(const Site_2& s1, const Site_2& s2, const Site_2& s3) const { return Kernel().orientation_2_object()(s1.point(), s2.point(), s3.point()); } Orientation operator()(const Site_2& s1, const Site_2& s2, const Site_2& s3, const Site_2& p1, const Site_2& p2) const { // computes the operation of the Voronoi vertex of s1, s2, s3 and // the points p1 and p2 Weighted_point_inverter inverter(s1); Inverted_weighted_point u2 = inverter(s2); Inverted_weighted_point u3 = inverter(s3); Bitangent_line blinv_23(u2, u3); Voronoi_circle vc(blinv_23); return vv_orientation(vc, s1.point(), p1.point(), p2.point(), Method_tag()); }};//--------------------------------------------------------------------CGAL_APOLLONIUS_GRAPH_2_END_NAMESPACECGAL_END_NAMESPACE#endif // CGAL_APOLLONIUS_GRAPH_2_ORIENTATION_2_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -