📄 point.h
字号:
/* Copyright 2004Stanford UniversityThis file is part of the DSR PDB Library.The DSR PDB Library is free software; you can redistribute it and/or modifyit under the terms of the GNU Lesser General Public License as published bythe Free Software Foundation; either version 2.1 of the License, or (at youroption) any later version.The DSR PDB Library is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITYor FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General PublicLicense for more details.You should have received a copy of the GNU Lesser General Public Licensealong with the DSR PDB Library; see the file LICENSE.LGPL. If not, write tothe Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,MA 02110-1301, USA. */#ifndef CGAL_DSR_PDB_POINT_H#define CGAL_DSR_PDB_POINT_H#include <CGAL/PDB/basic.h>#include <iostream>#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>#include <CGAL/squared_distance_3.h>CGAL_PDB_BEGIN_NAMESPACE // An alternative point class. typedef CGAL::Exact_predicates_inexact_constructions_kernel::Point_3 Point; typedef CGAL::Exact_predicates_inexact_constructions_kernel::Vector_3 Vector; struct Squared_distance{ double operator()(const Point &a, const Point &b) const { return CGAL::squared_distance(a,b); } }; //! Functor to compute the squared norm of a Vector struct Squared_norm{ double operator()(const Vector &v) const { return v.x()*v.x()+v.y()*v.y()+ v.z()*v.z(); } }; //! Functor to compute the cross product of two vectors struct Cross_product{ Vector operator()(const Vector &a, const Vector &b) const { double x = a.y() * b.z() - b.y() * a.z(); double y = a.z() * b.x() - b.z() * a.x(); double z = a.x() * b.y() - b.x() * a.y(); return Vector(x,y,z); } }; /*! This class represents a point in spherical coordinates. */ struct Spherical_point{ //! Construct a spherical point from coordinates. Spherical_point(double r, double theta, double phi) { phi_=phi; theta_=theta; r_=r; } //! Construct a point from a vector. Spherical_point(const Vector &v) { double xy2=v.x()*v.x()+v.y()*v.y(); double sd= std::sqrt(xy2+v.z()*v.z()); r_=sd; theta_= std::atan2(v.y(), v.x()); double xy=std::sqrt(xy2); phi_= std::atan2(v.z(), xy); } Spherical_point(){} //! The r component. double r() const { return r_; } //! The polar angle. double phi() const { return phi_; } //! The azimuthal angle in the x-y plane. double theta() const { return theta_; } private: double phi_, theta_, r_; }; //! Construct a spherical point with a certain axis. /*! \note This class is poorly designed having two completely separate usages just sharing internal code. */ struct Construct_spherical_point{ Construct_spherical_point(const Vector &xaxis, const Vector &zaxis){ make_axis(xaxis, zaxis); base_=Point(0,0,0); } Construct_spherical_point(const Point &p, const Point &pop, const Point &popop){ base_=p; make_axis(p-pop, popop-pop); } //! Construct the spherical coordinates of a vector. Spherical_point operator()(const Vector &v) const { double vz= v*z_; double vx= v*x_; double vy= v*y_; return Spherical_point(vx, vy, vz); }; //! Construct the spherical coordinates of a point relative to the base passed in the constructor. Spherical_point operator()(const Point &p) const { return operator()(p-base_); } private: void make_axis(const Vector &xaxis, const Vector &zaxis){ Squared_norm sn; z_= zaxis/sn(zaxis); Vector xmz= xaxis- (xaxis*z_)*z_; x_= xmz/sn(xmz); Cross_product cp; y_= cp(z_, x_); } Vector z_; Vector x_; Vector y_; Point base_; }; CGAL_PDB_END_NAMESPACE#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -