⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 queue.h

📁 excellent event-driven http framework which can be used as a light-http library
💻 H
📖 第 1 页 / 共 2 页
字号:
/*	$OpenBSD: queue.h,v 1.16 2000/09/07 19:47:59 art Exp $	*//*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*//* * Copyright (c) 1991, 1993 *	The Regents of the University of California.  All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors *    may be used to endorse or promote products derived from this software *    without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * *	@(#)queue.h	8.5 (Berkeley) 8/20/94 */#ifndef	_SYS_QUEUE_H_#define	_SYS_QUEUE_H_/* * This file defines five types of data structures: singly-linked lists,  * lists, simple queues, tail queues, and circular queues. * * * A singly-linked list is headed by a single forward pointer. The elements * are singly linked for minimum space and pointer manipulation overhead at * the expense of O(n) removal for arbitrary elements. New elements can be * added to the list after an existing element or at the head of the list. * Elements being removed from the head of the list should use the explicit * macro for this purpose for optimum efficiency. A singly-linked list may * only be traversed in the forward direction.  Singly-linked lists are ideal * for applications with large datasets and few or no removals or for * implementing a LIFO queue. * * A list is headed by a single forward pointer (or an array of forward * pointers for a hash table header). The elements are doubly linked * so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before * or after an existing element or at the head of the list. A list * may only be traversed in the forward direction. * * A simple queue is headed by a pair of pointers, one the head of the * list and the other to the tail of the list. The elements are singly * linked to save space, so elements can only be removed from the * head of the list. New elements can be added to the list before or after * an existing element, at the head of the list, or at the end of the * list. A simple queue may only be traversed in the forward direction. * * A tail queue is headed by a pair of pointers, one to the head of the * list and the other to the tail of the list. The elements are doubly * linked so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before or * after an existing element, at the head of the list, or at the end of * the list. A tail queue may be traversed in either direction. * * A circle queue is headed by a pair of pointers, one to the head of the * list and the other to the tail of the list. The elements are doubly * linked so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before or after * an existing element, at the head of the list, or at the end of the list. * A circle queue may be traversed in either direction, but has a more * complex end of list detection. * * For details on the use of these macros, see the queue(3) manual page. *//* * Singly-linked List definitions. */#define SLIST_HEAD(name, type)						\struct name {								\	struct type *slh_first;	/* first element */			\} #define	SLIST_HEAD_INITIALIZER(head)					\	{ NULL }#ifndef WIN32#define SLIST_ENTRY(type)						\struct {								\	struct type *sle_next;	/* next element */			\}#endif/* * Singly-linked List access methods. */#define	SLIST_FIRST(head)	((head)->slh_first)#define	SLIST_END(head)		NULL#define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))#define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)#define	SLIST_FOREACH(var, head, field)					\	for((var) = SLIST_FIRST(head);					\	    (var) != SLIST_END(head);					\	    (var) = SLIST_NEXT(var, field))/* * Singly-linked List functions. */#define	SLIST_INIT(head) {						\	SLIST_FIRST(head) = SLIST_END(head);				\}#define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\	(elm)->field.sle_next = (slistelm)->field.sle_next;		\	(slistelm)->field.sle_next = (elm);				\} while (0)#define	SLIST_INSERT_HEAD(head, elm, field) do {			\	(elm)->field.sle_next = (head)->slh_first;			\	(head)->slh_first = (elm);					\} while (0)#define	SLIST_REMOVE_HEAD(head, field) do {				\	(head)->slh_first = (head)->slh_first->field.sle_next;		\} while (0)/* * List definitions. */#define LIST_HEAD(name, type)						\struct name {								\	struct type *lh_first;	/* first element */			\}#define LIST_HEAD_INITIALIZER(head)					\	{ NULL }#define LIST_ENTRY(type)						\struct {								\	struct type *le_next;	/* next element */			\	struct type **le_prev;	/* address of previous next element */	\}/* * List access methods */#define	LIST_FIRST(head)		((head)->lh_first)#define	LIST_END(head)			NULL#define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))#define	LIST_NEXT(elm, field)		((elm)->field.le_next)#define LIST_FOREACH(var, head, field)					\	for((var) = LIST_FIRST(head);					\	    (var)!= LIST_END(head);					\	    (var) = LIST_NEXT(var, field))/* * List functions. */#define	LIST_INIT(head) do {						\	LIST_FIRST(head) = LIST_END(head);				\} while (0)#define LIST_INSERT_AFTER(listelm, elm, field) do {			\	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\		(listelm)->field.le_next->field.le_prev =		\		    &(elm)->field.le_next;				\	(listelm)->field.le_next = (elm);				\	(elm)->field.le_prev = &(listelm)->field.le_next;		\} while (0)#define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\	(elm)->field.le_prev = (listelm)->field.le_prev;		\	(elm)->field.le_next = (listelm);				\	*(listelm)->field.le_prev = (elm);				\	(listelm)->field.le_prev = &(elm)->field.le_next;		\} while (0)#define LIST_INSERT_HEAD(head, elm, field) do {				\	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\	(head)->lh_first = (elm);					\	(elm)->field.le_prev = &(head)->lh_first;			\} while (0)#define LIST_REMOVE(elm, field) do {					\	if ((elm)->field.le_next != NULL)				\		(elm)->field.le_next->field.le_prev =			\		    (elm)->field.le_prev;				\	*(elm)->field.le_prev = (elm)->field.le_next;			\} while (0)#define LIST_REPLACE(elm, elm2, field) do {				\	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\		(elm2)->field.le_next->field.le_prev =			\		    &(elm2)->field.le_next;				\	(elm2)->field.le_prev = (elm)->field.le_prev;			\	*(elm2)->field.le_prev = (elm2);				\} while (0)/* * Simple queue definitions. */#define SIMPLEQ_HEAD(name, type)					\struct name {								\	struct type *sqh_first;	/* first element */			\	struct type **sqh_last;	/* addr of last next element */		\}#define SIMPLEQ_HEAD_INITIALIZER(head)					\	{ NULL, &(head).sqh_first }#define SIMPLEQ_ENTRY(type)						\struct {								\	struct type *sqe_next;	/* next element */			\}/* * Simple queue access methods. */#define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)#define	SIMPLEQ_END(head)	    NULL#define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))#define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)#define SIMPLEQ_FOREACH(var, head, field)				\	for((var) = SIMPLEQ_FIRST(head);				\	    (var) != SIMPLEQ_END(head);					\	    (var) = SIMPLEQ_NEXT(var, field))/* * Simple queue functions. */#define	SIMPLEQ_INIT(head) do {						\	(head)->sqh_first = NULL;					\

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -