⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 travel fenzh.c

📁 关于旅行商问题的动态规划算法 在vc环境下编译通过
💻 C
字号:
/*
 * File: tsp.c
 * Description: 求解货郎担问题的分枝限界算法
 *              Branch-and-bound algorithm to solve
 *                  the travelling salesman problem.
 * Created: 2001/11/29
 * Author: Justin Hou [mailto:justin_hou@hotmail.com]
 *         C.S.Department of Tongji University
 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define TRUE (1)
#define FALSE (0)

#define MAX_CITIES (10)
#define INFINITY  (999)
#define I INFINITY

typedef int bool;

/* 定义边结构 */
typedef struct _EDGE {
	int head;
	int tail;
} EDGE;

/* 定义路径结构 */
typedef struct _PATH {
	EDGE edge[MAX_CITIES];
	int  edgesNumber;
} PATH;

/* 定义花费矩阵结构 */
typedef struct _MATRIX {
	int distance[MAX_CITIES][MAX_CITIES];
	int citiesNumber;
} MATRIX;

/* 定义树结点 */
typedef struct _NODE {
	int bound;	/* 相应于本结点的花费下界 */
	MATRIX matrix;	/* 当前花费矩阵 */
	PATH path;	/* 已经选定的边 */
	struct _NODE* left;	/* 左枝 */
	struct _NODE* right;	/* 右枝 */
} NODE;

int Simplify(MATRIX*);
EDGE SelectBestEdge(MATRIX);
MATRIX LeftNode(MATRIX, EDGE);
MATRIX RightNode(MATRIX, EDGE, PATH);
PATH AddEdge(EDGE, PATH);
PATH BABA(NODE);
PATH MendPath(PATH, MATRIX);
int MatrixSize(MATRIX, PATH);
void ShowMatrix(MATRIX);
void ShowPath(PATH, MATRIX);

main()
{
	PATH path;
	NODE root = {
		0, /* 花费下界 */
		{{{I, 1, 2, 7, 5}, /* 花费矩阵 */
		  {1, I, 4, 4, 3},
		  {2, 4, I, 1, 2},
		  {7, 4, 1, I, 3},
		  {5, 3, 2, 3, I}}, 5}, /* 城市数目 */
		{{0}, 0}, /* 经历过的路径 */
		NULL, NULL /* 左枝与右枝 */
	};

	/* 归约,建立根结点 */
	root.bound += Simplify(&root.matrix);
	/* 进入搜索循环 */
	path = BABA(root);
	ShowPath(path, root.matrix);
return 0;
}

/*
 * 算法主搜索函数,Branch-And-Bound Algorithm Search
 *             root 是当前的根结点,已归约,数据完善
 */
PATH BABA(NODE root)
{
	int i;
	static int minDist = INFINITY;
	static PATH minPath;
	EDGE selectedEdge;
	NODE *left, *right;

	puts("Current Root:\n------------");
	ShowMatrix(root.matrix);
	printf("Root Bound:%d\n", root.bound);

	/* 如果当前矩阵大小为2,说明还有两条边没有选,而这两条边必定只能有一种组合,
	 * 才能构成整体回路,所以事实上所有路线已经确定。
	 */
	if (MatrixSize(root.matrix, root.path) == 2) {
		if (root.bound < minDist) {
			minDist = root.bound;
			minPath = MendPath(root.path, root.matrix);
			getch();
			return (minPath);
		}
	}
	/* 根据左下界尽量大的原则选分枝边 */
	selectedEdge = SelectBestEdge(root.matrix);
	printf("Selected Edge:(%d, %d)\n", selectedEdge.head + 1, selectedEdge.tail + 1);

	/* 建立左右分枝结点 */
	left = (NODE *)malloc(sizeof(NODE));
	right = (NODE *)malloc(sizeof(NODE));
	if (left == NULL || right == NULL) {
		fprintf(stderr,"Error malloc.\n");
		exit(-1);
	}
	/* 初始化左右分枝结点 */
	left->bound = root.bound; /* 继承父结点的下界 */
	left->matrix = LeftNode(root.matrix, selectedEdge); /* 删掉分枝边 */
	left->path = root.path; /* 继承父结点的路径,没有增加新边 */
	left->left = NULL;
	left->right = NULL;

	right->bound = 	root.bound;
	right->matrix = RightNode(root.matrix, selectedEdge, root.path);/* 删除行列和回路边 */
	right->path = AddEdge(selectedEdge, root.path); /* 加入所选边 */
	right->left = NULL;
	right->right = NULL;

	/* 归约左右分枝结点 */
	left->bound += Simplify(&left->matrix);
	right->bound += Simplify(&right->matrix);

	/* 链接到根 */
	root.left = left;
	root.right = right;

	/* 显示到监视器 */
	puts("Right Branch:\n------------");
	ShowMatrix(right->matrix);
	puts("Left Branch:\n-----------");
	ShowMatrix(left->matrix);

	/* 如果右结点下界小于当前最佳答案,继续分枝搜索 */
	if (right->bound < minDist) {
		BABA(*right);
	}
	/* 否则不搜索,因为这条枝已经不可能产生更佳路线 */
	else {
		printf("Current minDist is %d, ", minDist);
		printf("Right Branch's Bound(= %d).\n", right->bound);
		printf("This branch is dead.\n");
	}

	/* 如果右结点下界小于当前最佳答案,继续分枝搜索 */
	if (left->bound < minDist) {
		BABA(*left);
	}
	/* 否则不搜索,因为这条枝已经不可能产生更佳路线 */
	else {
		printf("Current minDist is %d, ", minDist);
		printf("Left Branch's Bound(= %d).\n", left->bound);
		printf("This branch is dead.\n");
	}

	printf("The best answer now is %d\n", minDist);
	return (minPath);
}

/* 修补路径 */
PATH MendPath(PATH path, MATRIX c)
{
	int row, col;
	EDGE edge;
	int n = c.citiesNumber;

	for (row = 0; row < n; row++) {
		edge.head = row;
		for (col = 0; col < n; col++) {
			edge.tail = col;
			if (c.distance[row][col] == 0) {
				path = AddEdge(edge, path);
			}
		}
	}
	return path;

}

/* 归约费用矩阵,返回费用矩阵的归约常数 */
int Simplify(MATRIX* c)
{
	int row, col, min_dist, h;
	int n = c->citiesNumber;

	h = 0;
	/* 行归约 */
	for (row = 0; row < n; row++) {
		/* 找出本行最小的元素 */
		min_dist = INFINITY;
		for (col = 0; col < n; col++) {
			if (c->distance[row][col] < min_dist) {
				min_dist = c->distance[row][col];
			}
		}
		/* 如果本行元素都是无穷,说明本行已经被删除 */
		if (min_dist == INFINITY) continue;
		/* 本行每元素减去最小元素 */
		for (col = 0; col < n; col++) {
			if (c->distance[row][col] != INFINITY) {
				c->distance[row][col] -= min_dist;
			}
		}
		/* 计算归约常数 */
		h += min_dist;
	}

	/* 列归约 */
	for (col = 0; col < n; col++) {
		/* 找出本列最小的元素 */
		min_dist = INFINITY;
		for (row = 0; row < n; row++) {
			if (c->distance[row][col] < min_dist) {
				min_dist = c->distance[row][col];
			}
		}
		/* 如果本列元素都是无穷,说明本列已经被删除 */
		if (min_dist == INFINITY) continue;
		/* 本列元素减去最小元素 */
		for (row = 0; row < n; row++) {
			if (c->distance[row][col] != INFINITY) {
				c->distance[row][col] -= min_dist;
			}
		}
		/* 计算归约常数 */
		h += min_dist;
	}
	return (h);
}

/* 搜索所有花费为零的边中最合适的,使左枝下界更大 */
EDGE SelectBestEdge(MATRIX c)
{
	int row, col;
	int n = c.citiesNumber;
	int maxD;
	EDGE best, edge;

	/* 所用函数声明 */
	int D(MATRIX, EDGE);

	maxD = 0;
	for (row = 0; row < n; row++) {
		for (col = 0; col < n; col++) {
			edge.head = row;
			edge.tail = col;
			if (!c.distance[row][col] && maxD < D(c, edge)) {
				maxD = D(c, edge);
				best = edge;
			}
		}
	}
	return (best);
}

/* 计算如果选 edge 作为分枝边,左枝(不含 edge)下界的增量 */
int D(MATRIX c, EDGE edge)
{
	int row, col, dRow, dCol;
	int n = c.citiesNumber;

	dRow = INFINITY;
	for (col = 0; col < n; col++) {
		if (dRow < c.distance[edge.head][col] && col != edge.tail) {
			dRow = c.distance[edge.head][col];
		}
	}
	dCol = INFINITY;
	for (row = 0; row < n; row++) {
		if (dCol < c.distance[row][edge.tail] && row != edge.head) {
			dCol = c.distance[row][edge.tail];
		}
	}
	return (dRow + dCol);
}

/* 删掉所选分枝边 */
MATRIX LeftNode(MATRIX c, EDGE edge)
{
	c.distance[edge.head][edge.tail] = INFINITY;
	return c;
}

/* 删除行列和回路边后的矩阵 */
MATRIX	RightNode(MATRIX c, EDGE edge, PATH path)
{
	int row, col;
	int n = c.citiesNumber;
	EDGE loopEdge;

	/* 声明所需要的求回路边函数 */
	EDGE LoopEdge(PATH, EDGE);

	for (col = 0; col < n; col++)
		c.distance[edge.head][col] = INFINITY;
	for (row = 0; row < n; row++)
		c.distance[row][edge.tail] = INFINITY;

	loopEdge = LoopEdge(path, edge);
	c.distance[loopEdge.head][loopEdge.tail] = INFINITY;

	return (c);
}

/* 计算回路边的函数
 * 除了加入的新边, 当前结点路线集合中还可能包含一些已经选定的边, 这些边构成一条或
 * 几条路径, 为了不构成回路, 必须使其中包含新边的路径头尾不能相连,本函数返回这个
 * 头尾相连的边,以便把这个回路边的长度设成无穷。
 */
EDGE LoopEdge(PATH path, EDGE edge)
{
	int i, j;
	EDGE loopEdge;

	/* 最小的回路边 */
	loopEdge.head = edge.tail;
	loopEdge.tail = edge.head;

	/* 寻找回路边的头端点,即包含新边的路径的尾端点 */
	for (i = 0; i < path.edgesNumber; i++) {
		for (j = 0; j < path.edgesNumber; j++) {
			if (loopEdge.head == path.edge[j].head) {
				/* 扩大回路边 */
				loopEdge.head = path.edge[j].tail;
				break;
			}
		}
	}
	/* 寻找回路边的尾端点,即包含新边的路径的头端点 */
	for (i = 0; i < path.edgesNumber; i++) {
		for (j = 0; j < path.edgesNumber; j++) {
			if (loopEdge.tail == path.edge[j].tail) {
				/* 扩大回路边 */
				loopEdge.tail = path.edge[j].head;
				break;
			}
		}
	}

	return (loopEdge);
}

/* 将新边加入到路径中 */
PATH AddEdge(EDGE edge, PATH path)
{
	path.edge[path.edgesNumber++] = edge;
	return path;
}


/* 计算花费矩阵当前阶数 */
int MatrixSize(MATRIX c, PATH path)
{
	return (c.citiesNumber - path.edgesNumber);
}

/* 显示路径 */
void ShowPath(PATH path, MATRIX c)
{
	int i, dist;
	EDGE edge;
	int n = path.edgesNumber;

	dist = 0;
	printf("\nThe path is: ");
	for (i = 0; i < n; i++) {
		edge = path.edge[i];
		printf("(%d, %d) ", edge.head + 1, edge.tail + 1);
		dist += c.distance[edge.head][edge.tail];
	}
	/* printf("[Total Cost: %d]\n", dist); */
}

/* 显示花费矩阵 */
void ShowMatrix(MATRIX c)
{
	int row, col;
	int n =  c.citiesNumber;

	for (row = 0; row < n; row++) {
		for (col = 0; col < n; col++) {
			if (c.distance[row][col] != INFINITY) {
				printf("%3d", c.distance[row][col]);
			}
			else {
				printf("  -");
			}
		}
		putchar('\n');
	}
	getch();
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -