⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 uwb_sv_params_15_4a.m

📁 Threshold selection for UWB TOA estimation based on kurtosis
💻 M
字号:
function [Lam,Lmean,lambda_mode,lambda_1,lambda_2,beta,Gam,gamma_0,Kgamma, ...
sigma_cluster,nlos,gamma_rise,gamma_1,chi,m0,Km,sigma_m0,sigma_Km, ...
sfading_mode,m0_sp,std_shdw,kappa,fc,fs] = uwb_sv_params_15_4a( cm_num )
% Written by Sun Xu, Kim Chee Wee, B. Kannan & Francois Chin on 22/02/2004
% Return modified S-V model parameters for standard UWB channel models
%?????????????????????????
% Lam Cluster arrival rate (clusters per nsec)
% Lmean Mean number of Clusters
% lambda_mode Flag for Mixture of poission processes for ray arrival times
% 1 -> Mixture of poission processes for the ray arrival times
% 2 -> tapped delay line model
% lambda_1 Ray arrival rate for Mixture of poisson processes (rays per nsec)
% lambda_2 Ray arrival rate for Mixture of poisson processes (rays per nsec)
% beta Mixture probability
%?????????????????????????
% Gam Cluster decay factor (time constant, nsec)
% gamma0 Ray decay factor (time constant, nsec)
% Kgamma Time dependence of ray decay factor
% sigma_cluster Standard deviation of normally distributed variable for cluster energy
% nlos Flag for non line of sight channel
% 0 -> LOS
% 1 -> NLOS with first arrival path starting at t ~= 0
% 2 -> NLOS with first arrival path starting at t = 0 and diffused first cluster
% gamma_rise Ray decay factor of diffused first cluster (time constant, nsec)
% gamma_1 Ray decay factor of diffused first cluster (time constant, nsec)
% chi Diffuse weight of diffused first cluster
%?????????????????????????
% m0 Mean of log-normal distributed nakagami-m factor
% Km Time dependence of m0
% sigma_m0 Standard deviation of log-normal distributed nakagami-m factor
% sigma_Km Time dependence of sigma_m0
% sfading_mode Flag for small-scale fading
% 0 -> All paths have same m-factor distribution
% 1 -> LOS first path has a deterministic large m-factor
% 2 -> LOS first path of each cluster has a deterministic
% large m-factor
% m0_sp Deterministic large m-factor
%?????????????????????????
% std_shdw Standard deviation of log-normal shadowing of entire impulse response
%?????????????????????????
% kappa Frequency dependency of the channel
%?????????????????????????
% fc Center Frequency
% fs Frequency Range
%
% modified by I2R
if cm_num == 1, % Residential LOS
    % MPC arrival
    Lam = 0.047; Lmean = 3;
    lambda_mode = 1;
    lambda_1 = 1.54; lambda_2 = 0.15; beta = 0.095;
    %MPC decay
    Gam = 22.61; gamma_0 = 12.53; Kgamma = 0; sigma_cluster = 2.75;
    nlos = 0;
    gamma_rise = NaN; gamma_1 = NaN; chi = NaN; % dummy in this scenario
    % Small-scale Fading
    m0 = 0.67; Km = 0; sigma_m0 = 0.28; sigma_Km = 0;
    sfading_mode = 0; m0_sp = NaN;
    % Large-scale Fading ? Shadowing
    std_shdw = 2.22;
    % Frequency Dependence
    kappa = 1.12;
    fc = 6; % GHz
    fs = 50; % 2 - 10 GHz
elseif cm_num == 2, % Residential NLOS
    % MPC arrival
    Lam = 0.12; Lmean = 3.5;
    lambda_mode = 1;
    lambda_1 = 1.77; lambda_2 = 0.15; beta = 0.045;
    %MPC decay
    Gam = 26.27; gamma_0 = 17.5; Kgamma = 0; sigma_cluster = 2.93;
    nlos = 1;
    gamma_rise = NaN; gamma_1 = NaN; chi = NaN; % dummy in this scenario
    % Small-scale Fading
    m0 = 0.69; Km = 0; sigma_m0 = 0.32; sigma_Km = 0;
    sfading_mode = 0; m0_sp = NaN;
    % Large-scale Fading ? Shadowing
    std_shdw = 3.51;
    % Frequency Dependence
    kappa = 1.53;
    fc = 6; % GHz
    fs = 8; % 2 - 10 GHz
elseif cm_num == 3, % Office LOS
    % MPC arrival
    Lam = 0.016; Lmean = 5.4;
    lambda_mode = 1;
    lambda_1 = 0.19; lambda_2 = 2.97; beta = 0.0184;
    %MPC decay
    Gam = 14.6; gamma_0 = 6.4; Kgamma = 0; sigma_cluster = 3; % assumption
    nlos = 0;
    gamma_rise = NaN; gamma_1 = NaN; chi = NaN; % dummy in this scenario
    % Small-scale Fading
    m0 = 0.42; Km = 0; sigma_m0 = 0.31; sigma_Km = 0;
    sfading_mode = 2; m0_sp = 3; % assumption
    % Large-scale Fading ? Shadowing
    std_shdw = 0; %1.9;
    % Frequency Dependence
    kappa = 0.03;
    fc = 6; % GHz
    fs = 8; % 3 - 6 GHz
elseif cm_num == 4, % Office NLOS
    % MPC arrival
    Lam = 0.19; Lmean = 3.1;
    lambda_mode = 1;
    lambda_1 = 0.11; lambda_2 = 2.09; beta = 0.0096;
    %MPC decay
    Gam = 19.8; gamma_0 = 11.2; Kgamma = 0; sigma_cluster = 3; % assumption
    nlos = 2;
    gamma_rise = 15.21; gamma_1 = 11.84; chi = 0.78;
    % Small-scale Fading
    m0 = 0.5; Km = 0; sigma_m0 = 0.25; sigma_Km = 0;
    sfading_mode = 0; m0_sp = NaN; % assumption
    % Large-scale Fading ? Shadowing
    std_shdw = 3.9;
    % Frequency Dependence
    kappa =0.71;
    fc = 6; % GHz
    fs = 8; % 3 - 6 GHz
elseif cm_num == 5, % Outdoor LOS
    % MPC arrival
    Lam = 0.0448; Lmean = 13.6;
    lambda_mode = 1;
    lambda_1 = 0.13; lambda_2 = 2.41; beta = 0.0078;
    %MPC decay
    Gam = 31.7; gamma_0 = 3.7; Kgamma = 0; sigma_cluster = 3; % assumption
    nlos = 0;
    gamma_rise = NaN; gamma_1 = NaN; chi = NaN; % dummy in this scenario
    % Small-scale Fading
    m0 = 0.77; Km = 0; sigma_m0 = 0.78; sigma_Km = 0;
    sfading_mode = 2; m0_sp = 3; % assumption
    % Large-scale Fading ? Shadowing
    std_shdw = 0.83;
    % Frequency Dependence
    kappa = 0.12;
    fc = 6; % GHz
    fs = 8; % 3 - 6 GHz
elseif cm_num == 6, % Outdoor NLOS
    % MPC arrival
    Lam = 0.0243; Lmean = 10.5;
    lambda_mode = 1;
    lambda_1 = 0.15; lambda_2 = 1.13; beta = 0.062;
    %MPC decay
    Gam = 104.7; gamma_0 = 9.3; Kgamma = 0; sigma_cluster = 3; % assumption
    nlos = 1;
    gamma_rise = NaN; gamma_1 = NaN; chi = NaN; % dummy in this scenario
    % Small-scale Fading
    m0 = 0.56; Km = 0; sigma_m0 = 0.25; sigma_Km = 0;
    sfading_mode = 0; m0_sp = NaN; % assumption
    % Large-scale Fading ? Shadowing
    std_shdw = 2; % assumption
    % Frequency Dependence
    kappa = 0.13;
    fc =6; % GHz
    fs = 8; % 3 - 6 GHz
elseif cm_num == 7, % Industrial LOS
    % MPC arrival
    Lam = 0.0709; Lmean = 4.75;
    lambda_mode = 2;
    lambda_1 = 1; lambda_2 = 1; beta = 1; % dummy in this scenario
    %MPC decay
    Gam = 13.47; gamma_0 = 0.615; Kgamma = 0.926; sigma_cluster = 4.32;
    nlos = 0;
    gamma_rise = NaN; gamma_1 = NaN; chi = NaN; % dummy in this scenario
    % Small-scale Fading
    m0 = 0.36; Km = 0; sigma_m0 = 1.13; sigma_Km = 0;
    sfading_mode = 1; m0_sp = 12.99;
    % Large-scale Fading ? Shadowing
    std_shdw = 6;
    % Frequency Dependence
    kappa = -1.103;
    fc = 6; % GHz
    fs = 8; % 2 - 8 GHz
elseif cm_num == 8, % Industrial NLOS
    % MPC arrival
    Lam = 0.089; Lmean = 1;
    lambda_mode = 2;
    lambda_1 = 1; lambda_2 = 1; beta = 1; % dummy in this scenario
    %MPC decay
    Gam = 5.83; gamma_0 = 0.3; Kgamma = 0.44; sigma_cluster = 2.88;
    nlos = 2;
    gamma_rise = 47.23; gamma_1 = 84.15; chi = 0.99;
    % Small-scale Fading
    m0 = 0.3; Km = 0; sigma_m0 = 1.15; sigma_Km = 0;
    sfading_mode = 0; m0_sp = NaN; % m0_sp is assumption
    % Large-scale Fading ? Shadowing
    std_shdw = 6;
    % Frequency Dependence
    kappa = -1.427;
    fc = 6; % GHz
    fs = 8; % 2 - 8 GHz
elseif cm_num == 9, % Open Outdoor Environment NLOS (Fram, Snow-Covered Open Area)
    % MPC arrival
    Lam = 0.0305; Lmean = 3.31;
    lambda_mode = 1;
    lambda_1 = 0.0225; lambda_2 = 1; beta = 1;
    %MPC decay
    Gam = 56; gamma_0 = 0.92; Kgamma = 0; sigma_cluster = 3; % sigma_cluster is assumption
    nlos = 1;
    gamma_rise = NaN; gamma_1 = NaN; chi = NaN;
    % Small-scale Fading
    m0 = 4.1; Km = 0; sigma_m0 = 2.5; sigma_Km = 0;
    sfading_mode = 0; m0_sp = NaN; % m0_sp is assumption
    % Large-scale Fading ? Shadowing
    std_shdw = 3.96;
    % Frequency Dependence
    kappa = -1; % Kappa is assumption
    fc = 6; % GHz
    fs = 8; % 2 - 8 GHz
else
    error('cm_num is wrong!!')
end
return

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -