⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 malloc.c

📁 linux下建立JAVA虚拟机的源码KAFFE
💻 C
字号:
/*  * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers * Copyright (c) 1991-1994 by Xerox Corporation.  All rights reserved. * Copyright (c) 2000 by Hewlett-Packard Company.  All rights reserved. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose,  provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. *//* Boehm, February 7, 1996 4:32 pm PST */ #include <stdio.h>#include "private/gc_priv.h"extern ptr_t GC_clear_stack();	/* in misc.c, behaves like identity */void GC_extend_size_map();	/* in misc.c. *//* Allocate reclaim list for kind:	*//* Return TRUE on success		*/GC_bool GC_alloc_reclaim_list(kind)register struct obj_kind * kind;{    struct hblk ** result = (struct hblk **)    		GC_scratch_alloc((MAXOBJSZ+1) * sizeof(struct hblk *));    if (result == 0) return(FALSE);    BZERO(result, (MAXOBJSZ+1)*sizeof(struct hblk *));    kind -> ok_reclaim_list = result;    return(TRUE);}/* Allocate a large block of size lw words.	*//* The block is not cleared.			*//* Flags is 0 or IGNORE_OFF_PAGE.		*//* We hold the allocation lock.			*/ptr_t GC_alloc_large(lw, k, flags)word lw;int k;unsigned flags;{    struct hblk * h;    word n_blocks = OBJ_SZ_TO_BLOCKS(lw);    ptr_t result;	    if (!GC_is_initialized) GC_init_inner();    /* Do our share of marking work */        if(GC_incremental && !GC_dont_gc)	    GC_collect_a_little_inner((int)n_blocks);    h = GC_allochblk(lw, k, flags);#   ifdef USE_MUNMAP	if (0 == h) {	    GC_merge_unmapped();	    h = GC_allochblk(lw, k, flags);	}#   endif    while (0 == h && GC_collect_or_expand(n_blocks, (flags != 0))) {	h = GC_allochblk(lw, k, flags);    }    if (h == 0) {	result = 0;    } else {	int total_bytes = n_blocks * HBLKSIZE;	if (n_blocks > 1) {	    GC_large_allocd_bytes += total_bytes;	    if (GC_large_allocd_bytes > GC_max_large_allocd_bytes)	        GC_max_large_allocd_bytes = GC_large_allocd_bytes;	}	result = (ptr_t) (h -> hb_body);	GC_words_wasted += BYTES_TO_WORDS(total_bytes) - lw;    }    return result;}/* Allocate a large block of size lb bytes.  Clear if appropriate.	*//* We hold the allocation lock.						*/ptr_t GC_alloc_large_and_clear(lw, k, flags)word lw;int k;unsigned flags;{    ptr_t result = GC_alloc_large(lw, k, flags);    word n_blocks = OBJ_SZ_TO_BLOCKS(lw);    if (0 == result) return 0;    if (GC_debugging_started || GC_obj_kinds[k].ok_init) {	/* Clear the whole block, in case of GC_realloc call. */	BZERO(result, n_blocks * HBLKSIZE);    }    return result;}/* allocate lb bytes for an object of kind k.	*//* Should not be used to directly to allocate	*//* objects such as STUBBORN objects that	*//* require special handling on allocation.	*//* First a version that assumes we already	*//* hold lock:					*/ptr_t GC_generic_malloc_inner(lb, k)register word lb;register int k;{register word lw;register ptr_t op;register ptr_t *opp;    if( SMALL_OBJ(lb) ) {        register struct obj_kind * kind = GC_obj_kinds + k;#       ifdef MERGE_SIZES	  lw = GC_size_map[lb];#	else	  lw = ALIGNED_WORDS(lb);	  if (lw == 0) lw = MIN_WORDS;#       endif	opp = &(kind -> ok_freelist[lw]);        if( (op = *opp) == 0 ) {#	    ifdef MERGE_SIZES	      if (GC_size_map[lb] == 0) {	        if (!GC_is_initialized)  GC_init_inner();	        if (GC_size_map[lb] == 0) GC_extend_size_map(lb);	        return(GC_generic_malloc_inner(lb, k));	      }#	    else	      if (!GC_is_initialized) {	        GC_init_inner();	        return(GC_generic_malloc_inner(lb, k));	      }#	    endif	    if (kind -> ok_reclaim_list == 0) {	    	if (!GC_alloc_reclaim_list(kind)) goto out;	    }	    op = GC_allocobj(lw, k);	    if (op == 0) goto out;        }        /* Here everything is in a consistent state.	*/        /* We assume the following assignment is	*/        /* atomic.  If we get aborted			*/        /* after the assignment, we lose an object,	*/        /* but that's benign.				*/        /* Volatile declarations may need to be added	*/        /* to prevent the compiler from breaking things.*/	/* If we only execute the second of the 	*/	/* following assignments, we lose the free	*/	/* list, but that should still be OK, at least	*/	/* for garbage collected memory.		*/        *opp = obj_link(op);        obj_link(op) = 0;    } else {	lw = ROUNDED_UP_WORDS(lb);	op = (ptr_t)GC_alloc_large_and_clear(lw, k, 0);    }    GC_words_allocd += lw;    out:    return op;}/* Allocate a composite object of size n bytes.  The caller guarantees  *//* that pointers past the first page are not relevant.  Caller holds    *//* allocation lock.                                                     */ptr_t GC_generic_malloc_inner_ignore_off_page(lb, k)register size_t lb;register int k;{    register word lw;    ptr_t op;    if (lb <= HBLKSIZE)        return(GC_generic_malloc_inner((word)lb, k));    lw = ROUNDED_UP_WORDS(lb);    op = (ptr_t)GC_alloc_large_and_clear(lw, k, IGNORE_OFF_PAGE);    GC_words_allocd += lw;    return op;}ptr_t GC_generic_malloc(lb, k)register word lb;register int k;{    ptr_t result;    DCL_LOCK_STATE;    if (GC_have_errors) GC_print_all_errors();    GC_INVOKE_FINALIZERS();    if (SMALL_OBJ(lb)) {    	DISABLE_SIGNALS();	LOCK();        result = GC_generic_malloc_inner((word)lb, k);	UNLOCK();	ENABLE_SIGNALS();    } else {	word lw;	word n_blocks;	GC_bool init;	lw = ROUNDED_UP_WORDS(lb);	n_blocks = OBJ_SZ_TO_BLOCKS(lw);	init = GC_obj_kinds[k].ok_init;	DISABLE_SIGNALS();	LOCK();	result = (ptr_t)GC_alloc_large(lw, k, 0);	if (0 != result) {	  if (GC_debugging_started) {	    BZERO(result, n_blocks * HBLKSIZE);	  } else {#           ifdef THREADS	      /* Clear any memory that might be used for GC descriptors */	      /* before we release the lock.			      */	        ((word *)result)[0] = 0;	        ((word *)result)[1] = 0;	        ((word *)result)[lw-1] = 0;	        ((word *)result)[lw-2] = 0;#	    endif	  }	}	GC_words_allocd += lw;	UNLOCK();	ENABLE_SIGNALS();    	if (init && !GC_debugging_started && 0 != result) {	    BZERO(result, n_blocks * HBLKSIZE);        }    }    if (0 == result) {        return((*GC_oom_fn)(lb));    } else {        return(result);    }}   #define GENERAL_MALLOC(lb,k) \    (GC_PTR)GC_clear_stack(GC_generic_malloc((word)lb, k))/* We make the GC_clear_stack_call a tail call, hoping to get more of	*//* the stack.								*//* Allocate lb bytes of atomic (pointerfree) data */# ifdef __STDC__    GC_PTR GC_malloc_atomic(size_t lb)# else    GC_PTR GC_malloc_atomic(lb)    size_t lb;# endif{register ptr_t op;register ptr_t * opp;register word lw;DCL_LOCK_STATE;    if( EXPECT(SMALL_OBJ(lb), 1) ) {#       ifdef MERGE_SIZES	  lw = GC_size_map[lb];#	else	  lw = ALIGNED_WORDS(lb);#       endif	opp = &(GC_aobjfreelist[lw]);	FASTLOCK();        if( EXPECT(!FASTLOCK_SUCCEEDED() || (op = *opp) == 0, 0) ) {            FASTUNLOCK();            return(GENERAL_MALLOC((word)lb, PTRFREE));        }        /* See above comment on signals.	*/        *opp = obj_link(op);        GC_words_allocd += lw;        FASTUNLOCK();        return((GC_PTR) op);   } else {       return(GENERAL_MALLOC((word)lb, PTRFREE));   }}/* Allocate lb bytes of composite (pointerful) data */# ifdef __STDC__    GC_PTR GC_malloc(size_t lb)# else    GC_PTR GC_malloc(lb)    size_t lb;# endif{register ptr_t op;register ptr_t *opp;register word lw;DCL_LOCK_STATE;    if( EXPECT(SMALL_OBJ(lb), 1) ) {#       ifdef MERGE_SIZES	  lw = GC_size_map[lb];#	else	  lw = ALIGNED_WORDS(lb);#       endif	opp = &(GC_objfreelist[lw]);	FASTLOCK();        if( EXPECT(!FASTLOCK_SUCCEEDED() || (op = *opp) == 0, 0) ) {            FASTUNLOCK();            return(GENERAL_MALLOC((word)lb, NORMAL));        }        /* See above comment on signals.	*/	GC_ASSERT(0 == obj_link(op)		  || (word)obj_link(op)		  	<= (word)GC_greatest_plausible_heap_addr		     && (word)obj_link(op)		     	>= (word)GC_least_plausible_heap_addr);        *opp = obj_link(op);        obj_link(op) = 0;        GC_words_allocd += lw;        FASTUNLOCK();        return((GC_PTR) op);   } else {       return(GENERAL_MALLOC((word)lb, NORMAL));   }}# ifdef REDIRECT_MALLOC/* Avoid unnecessary nested procedure calls here, by #defining some	*//* malloc replacements.  Otherwise we end up saving a 			*//* meaningless return address in the object.  It also speeds things up,	*//* but it is admittedly quite ugly.					*/# ifdef GC_ADD_CALLER#   define RA GC_RETURN_ADDR,# else#   define RA# endif# define GC_debug_malloc_replacement(lb) \	GC_debug_malloc(lb, RA "unknown", 0)# ifdef __STDC__    GC_PTR malloc(size_t lb)# else    GC_PTR malloc(lb)    size_t lb;# endif  {    /* It might help to manually inline the GC_malloc call here.	*/    /* But any decent compiler should reduce the extra procedure call	*/    /* to at most a jump instruction in this case.			*/#   if defined(I386) && defined(GC_SOLARIS_THREADS)      /*       * Thread initialisation can call malloc before       * we're ready for it.       * It's not clear that this is enough to help matters.       * The thread implementation may well call malloc at other       * inopportune times.       */      if (!GC_is_initialized) return sbrk(lb);#   endif /* I386 && GC_SOLARIS_THREADS */    return((GC_PTR)REDIRECT_MALLOC(lb));  }# ifdef __STDC__    GC_PTR calloc(size_t n, size_t lb)# else    GC_PTR calloc(n, lb)    size_t n, lb;# endif  {    return((GC_PTR)REDIRECT_MALLOC(n*lb));  }#ifndef strdup# include <string.h># ifdef __STDC__    char *strdup(const char *s)# else    char *strdup(s)    char *s;# endif  {    size_t len = strlen(s) + 1;    char * result = ((char *)REDIRECT_MALLOC(len+1));    BCOPY(s, result, len+1);    return result;  }#endif /* !defined(strdup) */ /* If strdup is macro defined, we assume that it actually calls malloc, */ /* and thus the right thing will happen even without overriding it.	 */ /* This seems to be true on most Linux systems.			 */#undef GC_debug_malloc_replacement# endif /* REDIRECT_MALLOC *//* Explicitly deallocate an object p.				*/# ifdef __STDC__    void GC_free(GC_PTR p)# else    void GC_free(p)    GC_PTR p;# endif{    register struct hblk *h;    register hdr *hhdr;    register signed_word sz;    register ptr_t * flh;    register int knd;    register struct obj_kind * ok;    DCL_LOCK_STATE;    if (p == 0) return;    	/* Required by ANSI.  It's not my fault ...	*/    h = HBLKPTR(p);    hhdr = HDR(h);    GC_ASSERT(GC_base(p) == p);#   if defined(REDIRECT_MALLOC) && \	(defined(GC_SOLARIS_THREADS) || defined(GC_LINUX_THREADS) \	 || defined(__MINGW32__)) /* Should this be MSWIN32 in general? */	/* For Solaris, we have to redirect malloc calls during		*/	/* initialization.  For the others, this seems to happen 	*/ 	/* implicitly.							*/	/* Don't try to deallocate that memory.				*/	if (0 == hhdr) return;#   endif    knd = hhdr -> hb_obj_kind;    sz = hhdr -> hb_sz;    ok = &GC_obj_kinds[knd];    if (EXPECT((sz <= MAXOBJSZ), 1)) {#	ifdef THREADS	    DISABLE_SIGNALS();	    LOCK();#	endif	GC_mem_freed += sz;	/* A signal here can make GC_mem_freed and GC_non_gc_bytes	*/	/* inconsistent.  We claim this is benign.			*/	if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);		/* Its unnecessary to clear the mark bit.  If the 	*/		/* object is reallocated, it doesn't matter.  O.w. the	*/		/* collector will do it, since it's on a free list.	*/	if (ok -> ok_init) {	    BZERO((word *)p + 1, WORDS_TO_BYTES(sz-1));	}	flh = &(ok -> ok_freelist[sz]);	obj_link(p) = *flh;	*flh = (ptr_t)p;#	ifdef THREADS	    UNLOCK();	    ENABLE_SIGNALS();#	endif    } else {    	DISABLE_SIGNALS();        LOCK();        GC_mem_freed += sz;	if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);        GC_freehblk(h);        UNLOCK();        ENABLE_SIGNALS();    }}/* Explicitly deallocate an object p when we already hold lock.		*//* Only used for internally allocated objects, so we can take some 	*//* shortcuts.								*/#ifdef THREADSvoid GC_free_inner(GC_PTR p){    register struct hblk *h;    register hdr *hhdr;    register signed_word sz;    register ptr_t * flh;    register int knd;    register struct obj_kind * ok;    DCL_LOCK_STATE;    h = HBLKPTR(p);    hhdr = HDR(h);    knd = hhdr -> hb_obj_kind;    sz = hhdr -> hb_sz;    ok = &GC_obj_kinds[knd];    if (sz <= MAXOBJSZ) {	GC_mem_freed += sz;	if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);	if (ok -> ok_init) {	    BZERO((word *)p + 1, WORDS_TO_BYTES(sz-1));	}	flh = &(ok -> ok_freelist[sz]);	obj_link(p) = *flh;	*flh = (ptr_t)p;    } else {        GC_mem_freed += sz;	if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);        GC_freehblk(h);    }}#endif /* THREADS */# if defined(REDIRECT_MALLOC) && !defined(REDIRECT_FREE)#   define REDIRECT_FREE GC_free# endif# ifdef REDIRECT_FREE#   ifdef __STDC__      void free(GC_PTR p)#   else      void free(p)      GC_PTR p;#   endif  {#   ifndef IGNORE_FREE      REDIRECT_FREE(p);#   endif  }# endif  /* REDIRECT_MALLOC */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -