⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gc_cpp.h

📁 linux下建立JAVA虚拟机的源码KAFFE
💻 H
字号:
#ifndef GC_CPP_H#define GC_CPP_H/****************************************************************************Copyright (c) 1994 by Xerox Corporation.  All rights reserved. THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSEDOR IMPLIED.  ANY USE IS AT YOUR OWN RISK. Permission is hereby granted to use or copy this program for anypurpose, provided the above notices are retained on all copies.Permission to modify the code and to distribute modified code isgranted, provided the above notices are retained, and a notice thatthe code was modified is included with the above copyright notice.****************************************************************************C++ Interface to the Boehm Collector    John R. Ellis and Jesse Hull This interface provides access to the Boehm collector.  It providesbasic facilities similar to those described in "Safe, EfficientGarbage Collection for C++", by John R. Elis and David L. Detlefs(ftp://ftp.parc.xerox.com/pub/ellis/gc).All heap-allocated objects are either "collectable" or"uncollectable".  Programs must explicitly delete uncollectableobjects, whereas the garbage collector will automatically deletecollectable objects when it discovers them to be inaccessible.Collectable objects may freely point at uncollectable objects and viceversa.Objects allocated with the built-in "::operator new" are uncollectable.Objects derived from class "gc" are collectable.  For example:    class A: public gc {...};    A* a = new A;       // a is collectable. Collectable instances of non-class types can be allocated using the GC(or UseGC) placement:    typedef int A[ 10 ];    A* a = new (GC) A;Uncollectable instances of classes derived from "gc" can be allocatedusing the NoGC placement:    class A: public gc {...};    A* a = new (NoGC) A;   // a is uncollectable.Both uncollectable and collectable objects can be explicitly deletedwith "delete", which invokes an object's destructors and frees itsstorage immediately.A collectable object may have a clean-up function, which will beinvoked when the collector discovers the object to be inaccessible.An object derived from "gc_cleanup" or containing a member derivedfrom "gc_cleanup" has a default clean-up function that invokes theobject's destructors.  Explicit clean-up functions may be specified asan additional placement argument:    A* a = ::new (GC, MyCleanup) A;An object is considered "accessible" by the collector if it can bereached by a path of pointers from static variables, automaticvariables of active functions, or from some object with clean-upenabled; pointers from an object to itself are ignored.Thus, if objects A and B both have clean-up functions, and A points atB, B is considered accessible.  After A's clean-up is invoked and itsstorage released, B will then become inaccessible and will have itsclean-up invoked.  If A points at B and B points to A, forming acycle, then that's considered a storage leak, and neither will becollectable.  See the interface gc.h for low-level facilities forhandling such cycles of objects with clean-up.The collector cannot guarantee that it will find all inaccessibleobjects.  In practice, it finds almost all of them.Cautions:1. Be sure the collector has been augmented with "make c++".2.  If your compiler supports the new "operator new[]" syntax, thenadd -DGC_OPERATOR_NEW_ARRAY to the Makefile.If your compiler doesn't support "operator new[]", beware that anarray of type T, where T is derived from "gc", may or may not beallocated as a collectable object (it depends on the compiler).  Usethe explicit GC placement to make the array collectable.  For example:    class A: public gc {...};    A* a1 = new A[ 10 ];        // collectable or uncollectable?    A* a2 = new (GC) A[ 10 ];   // collectable3. The destructors of collectable arrays of objects derived from"gc_cleanup" will not be invoked properly.  For example:    class A: public gc_cleanup {...};    A* a = new (GC) A[ 10 ];    // destructors not invoked correctlyTypically, only the destructor for the first element of the array willbe invoked when the array is garbage-collected.  To get all thedestructors of any array executed, you must supply an explicitclean-up function:    A* a = new (GC, MyCleanUp) A[ 10 ];(Implementing clean-up of arrays correctly, portably, and in a waythat preserves the correct exception semantics requires a languageextension, e.g. the "gc" keyword.)4. Compiler bugs:* Solaris 2's CC (SC3.0) doesn't implement t->~T() correctly, so thedestructors of classes derived from gc_cleanup won't be invoked.You'll have to explicitly register a clean-up function withnew-placement syntax.* Evidently cfront 3.0 does not allow destructors to be explicitlyinvoked using the ANSI-conforming syntax t->~T().  If you're usingcfront 3.0, you'll have to comment out the class gc_cleanup, whichuses explicit invocation.5. GC name conflicts:Many other systems seem to use the identifier "GC" as an abbreviationfor "Graphics Context".  Since version 5.0, GC placement has been replacedby UseGC.  GC is an alias for UseGC, unless GC_NAME_CONFLICT is defined.****************************************************************************/#include "gc.h"#ifndef THINK_CPLUS#  define GC_cdecl#else#  define GC_cdecl _cdecl#endif#if ! defined( GC_NO_OPERATOR_NEW_ARRAY ) \    && !defined(_ENABLE_ARRAYNEW) /* Digimars */ \    && (defined(__BORLANDC__) && (__BORLANDC__ < 0x450) \	|| (defined(__GNUC__) && \	    (__GNUC__ < 2 || __GNUC__ == 2 && __GNUC_MINOR__ < 6)) \	|| (defined(__WATCOMC__) && __WATCOMC__ < 1050))#   define GC_NO_OPERATOR_NEW_ARRAY#endif#if !defined(GC_NO_OPERATOR_NEW_ARRAY) && !defined(GC_OPERATOR_NEW_ARRAY)#   define GC_OPERATOR_NEW_ARRAY#endif#if    ! defined ( __BORLANDC__ )  /* Confuses the Borland compiler. */ \    && ! defined ( __sgi )#  define GC_PLACEMENT_DELETE#endifenum GCPlacement {UseGC,#ifndef GC_NAME_CONFLICT		  GC=UseGC,#endif                  NoGC, PointerFreeGC};class gc {public:    inline void* operator new( size_t size );    inline void* operator new( size_t size, GCPlacement gcp );    inline void* operator new( size_t size, void *p );    	/* Must be redefined here, since the other overloadings	*/    	/* hide the global definition.				*/    inline void operator delete( void* obj );#   ifdef GC_PLACEMENT_DELETE        inline void operator delete( void*, void* );#   endif#ifdef GC_OPERATOR_NEW_ARRAY    inline void* operator new[]( size_t size );    inline void* operator new[]( size_t size, GCPlacement gcp );    inline void* operator new[]( size_t size, void *p );    inline void operator delete[]( void* obj );#   ifdef GC_PLACEMENT_DELETE      inline void gc::operator delete[]( void*, void* );#   endif#endif /* GC_OPERATOR_NEW_ARRAY */    };        /*    Instances of classes derived from "gc" will be allocated in the     collected heap by default, unless an explicit NoGC placement is    specified. */class gc_cleanup: virtual public gc {public:    inline gc_cleanup();    inline virtual ~gc_cleanup();private:    inline static void GC_cdecl cleanup( void* obj, void* clientData );};    /*    Instances of classes derived from "gc_cleanup" will be allocated    in the collected heap by default.  When the collector discovers an    inaccessible object derived from "gc_cleanup" or containing a    member derived from "gc_cleanup", its destructors will be    invoked. */extern "C" {typedef void (*GCCleanUpFunc)( void* obj, void* clientData );}#ifdef _MSC_VER  // Disable warning that "no matching operator delete found; memory will  // not be freed if initialization throws an exception"# pragma warning(disable:4291)#endifinline void* operator new(     size_t size,     GCPlacement gcp,    GCCleanUpFunc cleanup = 0,    void* clientData = 0 );    /*    Allocates a collectable or uncollected object, according to the    value of "gcp".    For collectable objects, if "cleanup" is non-null, then when the    allocated object "obj" becomes inaccessible, the collector will    invoke the function "cleanup( obj, clientData )" but will not    invoke the object's destructors.  It is an error to explicitly    delete an object allocated with a non-null "cleanup".    It is an error to specify a non-null "cleanup" with NoGC or for    classes derived from "gc_cleanup" or containing members derived    from "gc_cleanup". */#ifdef _MSC_VER /** This ensures that the system default operator new[] doesn't get  *  undefined, which is what seems to happen on VC++ 6 for some reason  *  if we define a multi-argument operator new[].  *  There seems to be really redirect new in this environment without  *  including this everywhere.   */ void *operator new[]( size_t size );  void operator delete[](void* obj); void* operator new( size_t size); void operator delete(void* obj); // This new operator is used by VC++ in case of Debug builds ! void* operator new(  size_t size,		      int ,//nBlockUse,		      const char * szFileName,		      int nLine );#endif /* _MSC_VER */#ifdef GC_OPERATOR_NEW_ARRAYinline void* operator new[](    size_t size,     GCPlacement gcp,    GCCleanUpFunc cleanup = 0,    void* clientData = 0 );    /*    The operator new for arrays, identical to the above. */#endif /* GC_OPERATOR_NEW_ARRAY *//****************************************************************************Inline implementation****************************************************************************/inline void* gc::operator new( size_t size ) {    return GC_MALLOC( size );}    inline void* gc::operator new( size_t size, GCPlacement gcp ) {    if (gcp == UseGC)         return GC_MALLOC( size );    else if (gcp == PointerFreeGC)	return GC_MALLOC_ATOMIC( size );    else        return GC_MALLOC_UNCOLLECTABLE( size );}inline void* gc::operator new( size_t size, void *p ) {    return p;}inline void gc::operator delete( void* obj ) {    GC_FREE( obj );}    #ifdef GC_PLACEMENT_DELETE  inline void gc::operator delete( void*, void* ) {}#endif#ifdef GC_OPERATOR_NEW_ARRAYinline void* gc::operator new[]( size_t size ) {    return gc::operator new( size );}    inline void* gc::operator new[]( size_t size, GCPlacement gcp ) {    return gc::operator new( size, gcp );}inline void* gc::operator new[]( size_t size, void *p ) {    return p;}inline void gc::operator delete[]( void* obj ) {    gc::operator delete( obj );}#ifdef GC_PLACEMENT_DELETE  inline void gc::operator delete[]( void*, void* ) {}#endif    #endif /* GC_OPERATOR_NEW_ARRAY */inline gc_cleanup::~gc_cleanup() {    GC_register_finalizer_ignore_self( GC_base(this), 0, 0, 0, 0 );}inline void gc_cleanup::cleanup( void* obj, void* displ ) {    ((gc_cleanup*) ((char*) obj + (ptrdiff_t) displ))->~gc_cleanup();}inline gc_cleanup::gc_cleanup() {    GC_finalization_proc oldProc;    void* oldData;    void* base = GC_base( (void *) this );    if (0 != base)  {      // Don't call the debug version, since this is a real base address.      GC_register_finalizer_ignore_self(         base, (GC_finalization_proc)cleanup, (void*) ((char*) this - (char*) base),         &oldProc, &oldData );      if (0 != oldProc) {        GC_register_finalizer_ignore_self( base, oldProc, oldData, 0, 0 );}}}inline void* operator new(     size_t size,     GCPlacement gcp,    GCCleanUpFunc cleanup,    void* clientData ){    void* obj;    if (gcp == UseGC) {        obj = GC_MALLOC( size );        if (cleanup != 0)             GC_REGISTER_FINALIZER_IGNORE_SELF(                 obj, cleanup, clientData, 0, 0 );}    else if (gcp == PointerFreeGC) {        obj = GC_MALLOC_ATOMIC( size );}    else {        obj = GC_MALLOC_UNCOLLECTABLE( size );};    return obj;}        #ifdef GC_OPERATOR_NEW_ARRAYinline void* operator new[](     size_t size,     GCPlacement gcp,    GCCleanUpFunc cleanup,    void* clientData ){    return ::operator new( size, gcp, cleanup, clientData );}#endif /* GC_OPERATOR_NEW_ARRAY */#endif /* GC_CPP_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -