📄 anubis.java
字号:
^ Ker[0]; int a1 = (in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF)) ^ Ker[1]; int a2 = (in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF)) ^ Ker[2]; int a3 = (in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i] & 0xFF)) ^ Ker[3]; int b0, b1, b2, b3; // round function for (int r = 1; r < R; r++) { Ker = K[r]; b0 = T0[a0 >>> 24] ^ T1[a1 >>> 24] ^ T2[a2 >>> 24] ^ T3[a3 >>> 24] ^ Ker[0]; b1 = T0[(a0 >>> 16) & 0xFF] ^ T1[(a1 >>> 16) & 0xFF] ^ T2[(a2 >>> 16) & 0xFF] ^ T3[(a3 >>> 16) & 0xFF] ^ Ker[1]; b2 = T0[(a0 >>> 8) & 0xFF] ^ T1[(a1 >>> 8) & 0xFF] ^ T2[(a2 >>> 8) & 0xFF] ^ T3[(a3 >>> 8) & 0xFF] ^ Ker[2]; b3 = T0[a0 & 0xFF] ^ T1[a1 & 0xFF] ^ T2[a2 & 0xFF] ^ T3[a3 & 0xFF] ^ Ker[3]; a0 = b0; a1 = b1; a2 = b2; a3 = b3; if (DEBUG && debuglevel > 6) { System.out.println("T" + r + "=" + Util.toString(a0) + Util.toString(a1) + Util.toString(a2) + Util.toString(a3)); } } // last round function Ker = K[R]; int tt = Ker[0]; out[j++] = (byte) (S[a0 >>> 24] ^ (tt >>> 24)); out[j++] = (byte) (S[a1 >>> 24] ^ (tt >>> 16)); out[j++] = (byte) (S[a2 >>> 24] ^ (tt >>> 8)); out[j++] = (byte) (S[a3 >>> 24] ^ tt); tt = Ker[1]; out[j++] = (byte) (S[(a0 >>> 16) & 0xFF] ^ (tt >>> 24)); out[j++] = (byte) (S[(a1 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte) (S[(a2 >>> 16) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte) (S[(a3 >>> 16) & 0xFF] ^ tt); tt = Ker[2]; out[j++] = (byte) (S[(a0 >>> 8) & 0xFF] ^ (tt >>> 24)); out[j++] = (byte) (S[(a1 >>> 8) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte) (S[(a2 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte) (S[(a3 >>> 8) & 0xFF] ^ tt); tt = Ker[3]; out[j++] = (byte) (S[a0 & 0xFF] ^ (tt >>> 24)); out[j++] = (byte) (S[a1 & 0xFF] ^ (tt >>> 16)); out[j++] = (byte) (S[a2 & 0xFF] ^ (tt >>> 8)); out[j] = (byte) (S[a3 & 0xFF] ^ tt); if (DEBUG && debuglevel > 6) { System.out.println("T=" + Util.toString(out, j - 15, 16)); System.out.println(); } } // Instance methods // ------------------------------------------------------------------------- // java.lang.Cloneable interface implementation ---------------------------- public Object clone() { Anubis result = new Anubis(); result.currentBlockSize = this.currentBlockSize; return result; } // IBlockCipherSpi interface implementation -------------------------------- public Iterator blockSizes() { ArrayList al = new ArrayList(); al.add(new Integer(DEFAULT_BLOCK_SIZE)); return Collections.unmodifiableList(al).iterator(); } public Iterator keySizes() { ArrayList al = new ArrayList(); for (int n = 4; n < 10; n++) { al.add(new Integer(n * 32 / 8)); } return Collections.unmodifiableList(al).iterator(); } /** * <p>Expands a user-supplied key material into a session key for a * designated <i>block size</i>.</p> * * @param uk the 32N-bit user-supplied key material; 4 <= N <= 10. * @param bs the desired block size in bytes. * @return an Object encapsulating the session key. * @exception IllegalArgumentException if the block size is not 16 (128-bit). * @exception InvalidKeyException if the key data is invalid. */ public Object makeKey(byte[] uk, int bs) throws InvalidKeyException { if (bs != DEFAULT_BLOCK_SIZE) { throw new IllegalArgumentException(); } if (uk == null) { throw new InvalidKeyException("Empty key"); } if ((uk.length % 4) != 0) { throw new InvalidKeyException("Key is not multiple of 32-bit."); } int N = uk.length / 4; if (N < 4 || N > 10) { throw new InvalidKeyException("Key is not 32N; 4 <= N <= 10"); } int R = 8 + N; int[][] Ke = new int[R + 1][4]; // encryption round keys int[][] Kd = new int[R + 1][4]; // decryption round keys int[] tk = new int[N]; int[] kk = new int[N]; int r, i, j, k, k0, k1, k2, k3, tt; // apply mu to k0 for (r = 0, i = 0; r < N;) { tk[r++] = uk[i++] << 24 | (uk[i++] & 0xFF) << 16 | (uk[i++] & 0xFF) << 8 | (uk[i++] & 0xFF); } for (r = 0; r <= R; r++) { if (r > 0) { // psi = key evolution function kk[0] = T0[(tk[0] >>> 24)] ^ T1[(tk[N - 1] >>> 16) & 0xFF] ^ T2[(tk[N - 2] >>> 8) & 0xFF] ^ T3[tk[N - 3] & 0xFF]; kk[1] = T0[(tk[1] >>> 24)] ^ T1[(tk[0] >>> 16) & 0xFF] ^ T2[(tk[N - 1] >>> 8) & 0xFF] ^ T3[tk[N - 2] & 0xFF]; kk[2] = T0[(tk[2] >>> 24)] ^ T1[(tk[1] >>> 16) & 0xFF] ^ T2[(tk[0] >>> 8) & 0xFF] ^ T3[tk[N - 1] & 0xFF]; kk[3] = T0[(tk[3] >>> 24)] ^ T1[(tk[2] >>> 16) & 0xFF] ^ T2[(tk[1] >>> 8) & 0xFF] ^ T3[tk[0] & 0xFF]; for (i = 4; i < N; i++) { kk[i] = T0[tk[i] >>> 24] ^ T1[(tk[i - 1] >>> 16) & 0xFF] ^ T2[(tk[i - 2] >>> 8) & 0xFF] ^ T3[tk[i - 3] & 0xFF]; } // apply sigma (affine addition) to round constant tk[0] = rc[r - 1] ^ kk[0]; for (i = 1; i < N; i++) { tk[i] = kk[i]; } } // phi = key selection function tt = tk[N - 1]; k0 = T4[tt >>> 24]; k1 = T4[(tt >>> 16) & 0xFF]; k2 = T4[(tt >>> 8) & 0xFF]; k3 = T4[tt & 0xFF]; for (k = N - 2; k >= 0; k--) { tt = tk[k]; k0 = T4[tt >>> 24] ^ (T5[(k0 >>> 24) & 0xFF] & 0xFF000000) ^ (T5[(k0 >>> 16) & 0xFF] & 0x00FF0000) ^ (T5[(k0 >>> 8) & 0xFF] & 0x0000FF00) ^ (T5[k0 & 0xFF] & 0x000000FF); k1 = T4[(tt >>> 16) & 0xFF] ^ (T5[(k1 >>> 24) & 0xFF] & 0xFF000000) ^ (T5[(k1 >>> 16) & 0xFF] & 0x00FF0000) ^ (T5[(k1 >>> 8) & 0xFF] & 0x0000FF00) ^ (T5[k1 & 0xFF] & 0x000000FF); k2 = T4[(tt >>> 8) & 0xFF] ^ (T5[(k2 >>> 24) & 0xFF] & 0xFF000000) ^ (T5[(k2 >>> 16) & 0xFF] & 0x00FF0000) ^ (T5[(k2 >>> 8) & 0xFF] & 0x0000FF00) ^ (T5[(k2) & 0xFF] & 0x000000FF); k3 = T4[tt & 0xFF] ^ (T5[(k3 >>> 24) & 0xFF] & 0xFF000000) ^ (T5[(k3 >>> 16) & 0xFF] & 0x00FF0000) ^ (T5[(k3 >>> 8) & 0xFF] & 0x0000FF00) ^ (T5[k3 & 0xFF] & 0x000000FF); } Ke[r][0] = k0; Ke[r][1] = k1; Ke[r][2] = k2; Ke[r][3] = k3; if (r == 0 || r == R) { Kd[R - r][0] = k0; Kd[R - r][1] = k1; Kd[R - r][2] = k2; Kd[R - r][3] = k3; } else { Kd[R - r][0] = T0[S[k0 >>> 24] & 0xFF] ^ T1[S[(k0 >>> 16) & 0xFF] & 0xFF] ^ T2[S[(k0 >>> 8) & 0xFF] & 0xFF] ^ T3[S[k0 & 0xFF] & 0xFF]; Kd[R - r][1] = T0[S[k1 >>> 24] & 0xFF] ^ T1[S[(k1 >>> 16) & 0xFF] & 0xFF] ^ T2[S[(k1 >>> 8) & 0xFF] & 0xFF] ^ T3[S[k1 & 0xFF] & 0xFF]; Kd[R - r][2] = T0[S[k2 >>> 24] & 0xFF] ^ T1[S[(k2 >>> 16) & 0xFF] & 0xFF] ^ T2[S[(k2 >>> 8) & 0xFF] & 0xFF] ^ T3[S[k2 & 0xFF] & 0xFF]; Kd[R - r][3] = T0[S[k3 >>> 24] & 0xFF] ^ T1[S[(k3 >>> 16) & 0xFF] & 0xFF] ^ T2[S[(k3 >>> 8) & 0xFF] & 0xFF] ^ T3[S[k3 & 0xFF] & 0xFF]; } } if (DEBUG && debuglevel > 8) { System.out.println(); System.out.println("Key schedule"); System.out.println(); System.out.println("Ke[]:"); for (r = 0; r < R + 1; r++) { System.out.print("#" + r + ": "); for (j = 0; j < 4; j++) System.out.print("0x" + Util.toString(Ke[r][j]) + ", "); System.out.println(); } System.out.println(); System.out.println("Kd[]:"); for (r = 0; r < R + 1; r++) { System.out.print("#" + r + ": "); for (j = 0; j < 4; j++) System.out.print("0x" + Util.toString(Kd[r][j]) + ", "); System.out.println(); } System.out.println(); } return new Object[] { Ke, Kd }; } public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) { if (bs != DEFAULT_BLOCK_SIZE) { throw new IllegalArgumentException(); } int[][] K = (int[][]) ((Object[]) k)[0]; anubis(in, i, out, j, K); } public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) { if (bs != DEFAULT_BLOCK_SIZE) { throw new IllegalArgumentException(); } int[][] K = (int[][]) ((Object[]) k)[1]; anubis(in, i, out, j, K); } public boolean selfTest() { if (valid == null) { boolean result = super.selfTest(); // do symmetry tests if (result) { result = testKat(KAT_KEY, KAT_CT); } valid = new Boolean(result); } return valid.booleanValue(); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -