📄 example_2833xdma_xintf_to_ram.c
字号:
// TI File $Revision: /main/1 $
// Checkin $Date: August 29, 2007 14:07:44 $
//###########################################################################
//
// FILE: Example_2833xDMA_XINTF_to_Ram.c
//
// TITLE: DSP2833x DMA Ram to Ram
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
//
// DESCRIPTION:
//
// Code will perform a block copy of 1024 words from Zone 7 XINTF (DMABuf2)
// to L4 SARAM (DMABuf1) .
// Transfer will be started by Timer0.
// We will use 32-bit DMA datasize. Note this is independent from the XINTF
// data width which is x16. Code will end in local_DINTCH1_ISR once the transfer is
// complete
//
// Watch Variables:
// DMABuf1
// DMABuf2
//
//###########################################################################
//
// Original source by: M.P.
//
// $TI Release: DSP2833x Header Files V1.01 $
// $Release Date: September 26, 2007 $
//###########################################################################
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
#define BUF_SIZE 1024 // Sample buffer size
#pragma DATA_SECTION(DMABuf1,"DMARAML4");
#pragma DATA_SECTION(DMABuf2,"ZONE7DATA");
volatile Uint16 DMABuf1[BUF_SIZE];
volatile Uint16 DMABuf2[BUF_SIZE];
volatile Uint16 *DMADest;
volatile Uint16 *DMASource;
interrupt void local_DINTCH1_ISR(void);
void init_zone7(void);
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // Allow access to EALLOW protected registers
PieVectTable.DINTCH1= &local_DINTCH1_ISR;
EDIS; // Disable access to EALLOW protected registers
IER = M_INT7 ; //Enable INT7 (7.1 DMA Ch1)
EnableInterrupts();
CpuTimer0Regs.TCR.bit.TSS = 1; //Stop Timer0 for now
//Step 5. User specific code, enable interrupts:
// Initialize DMA
DMAInitialize();
init_zone7();
// Initialize Tables
for (i=0; i<BUF_SIZE; i++)
{
DMABuf1[i] = 0;
DMABuf2[i] = i;
}
// Configure DMA Channel
DMADest = &DMABuf1[0];
DMASource = &DMABuf2[0];
DMACH1AddrConfig(DMADest,DMASource);
DMACH1BurstConfig(31,2,2); //Will set up to use 32-bit datasize, pointers are based on 16-bit words
DMACH1TransferConfig(31,2,2); //so need to increment by 2 to grab the correct location
DMACH1WrapConfig(0xFFFF,0,0xFFFF,0);
//Use timer0 to start the x-fer.
//Since this is a static copy use one shot mode, so only one trigger is needed
//Also using 32-bit mode to decrease x-fer time
DMACH1ModeConfig(DMA_TINT0,PERINT_ENABLE,ONESHOT_ENABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,OVRFLOW_DISABLE,THIRTYTWO_BIT,CHINT_END,CHINT_ENABLE);
StartDMACH1();
//Init the timer 0
CpuTimer0Regs.TIM.half.LSW = 512; //load low value so we can start the DMA quickly
CpuTimer0Regs.TCR.bit.SOFT = 1; //Allow to free run even if halted
CpuTimer0Regs.TCR.bit.FREE = 1;
CpuTimer0Regs.TCR.bit.TIE = 1; //Enable the timer0 interrupt signal
CpuTimer0Regs.TCR.bit.TSS = 0; //restart the timer 0
for(;;);
}
// INT7.1
interrupt void local_DINTCH1_ISR(void) // DMA Channel 1
{
// To receive more interrupts from this PIE group, acknowledge this interrupt
PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;
// Next two lines for debug only to halt the processor here
// Remove after inserting ISR Code
asm (" ESTOP0");
for(;;);
}
// Configure the timing paramaters for Zone 7.
// Notes:
// This function should not be executed from XINTF
// Adjust the timing based on the data manual and
// external device requirements.
void init_zone7(void)
{
// Make sure the XINTF clock is enabled
SysCtrlRegs.PCLKCR3.bit.XINTFENCLK = 1;
// Configure the GPIO for XINTF with a 16-bit data bus
// This function is in DSP2833x_Xintf.c
InitXintf16Gpio();
// All Zones---------------------------------
// Timing for all zones based on XTIMCLK = SYSCLKOUT
XintfRegs.XINTCNF2.bit.XTIMCLK = 0;
// Buffer up to 3 writes
XintfRegs.XINTCNF2.bit.WRBUFF = 3;
// XCLKOUT is enabled
XintfRegs.XINTCNF2.bit.CLKOFF = 0;
// XCLKOUT = XTIMCLK
XintfRegs.XINTCNF2.bit.CLKMODE = 0;
// Zone 7------------------------------------
// When using ready, ACTIVE must be 1 or greater
// Lead must always be 1 or greater
// Zone write timing
XintfRegs.XTIMING7.bit.XWRLEAD = 1;
XintfRegs.XTIMING7.bit.XWRACTIVE = 2;
XintfRegs.XTIMING7.bit.XWRTRAIL = 1;
// Zone read timing
XintfRegs.XTIMING7.bit.XRDLEAD = 1;
XintfRegs.XTIMING7.bit.XRDACTIVE = 3;
XintfRegs.XTIMING7.bit.XRDTRAIL = 0;
// don't double all Zone read/write lead/active/trail timing
XintfRegs.XTIMING7.bit.X2TIMING = 0;
// Zone will not sample XREADY signal
XintfRegs.XTIMING7.bit.USEREADY = 0;
XintfRegs.XTIMING7.bit.READYMODE = 0;
// 1,1 = x16 data bus
// 0,1 = x32 data bus
// other values are reserved
XintfRegs.XTIMING7.bit.XSIZE = 3;
//Force a pipeline flush to ensure that the write to
//the last register configured occurs before returning.
asm(" RPT #7 || NOP");
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -