📄 example_2833xhrpwm_sfo_v5.c
字号:
// TI File $Revision: /main/9 $
// Checkin $Date: August 24, 2007 15:05:04 $
//###########################################################################
//
// FILE: Example_2833xHRPWM_SFO_V5.c
//
// TITLE: DSP2833x Device HRPWM SFO V5 example
//
// ASSUMPTIONS:
//
//
// This program requires the DSP2833x header files, which include
// the following files required for this example:
// SFO_V5.h and SFO_TI_Build_V5_fpu.lib (or SFO_TI_Build_V5.lib for fixed point)
//
//
// !!NOTE!!
// By default, this example project is configured for floating-point math. All included libraries
// must be pre-compiled for floating-point math.
//
// Therefore, SFO_TI_Build_V5_fpu.lib (compiled for floating-point) is included in the
// project instead of the SFO_TI_Build_V5.lib (compiled for fixed-point).
//
// To convert the example for fixed-point math, follow the instructions in sfo_readme.txt
// in the /doc directory of the header files and peripheral examples package.
//
//
// Monitor the following pins on an oscilloscope:
// ePWM1A (GPIO0)
// ePWM2A (GPIO2)
// ePWM3A (GPIO4)
// ePWM4A (GPIO6)
// ePWM5A (GPIO8)
// ePWM6A (GPIO10)
//
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// This example modifies the MEP control registers to show edge displacement
// due to the HRPWM control extension of the respective ePWM module.
//
// This example calls the following TI's MEP Scale Factor Optimizer (SFO)
// software library V5 functions:
//
//
// int SFO_MepEn_V5(int i);
// updates MEP_ScaleFactor[i] dynamically when HRPWM is in use.
// - returns 1 when complete for the specified channel
// - returns 0 if not complete for the specified channel
// - returns 2 if there is a scale factor out-of-range error
// (MEP_ScaleFactor[n] differs from seed MEP_ScaleFactor[0]
// by more than +/-15). To remedy this:
// 1. Check your software to make sure MepEn completes for
// 1 channel before calling MepEn for another channel.
// 2. Re-run MepDis and re-seed MEP_ScaleFactor[0]. Then
// try again.
// 3. If reason is known and acceptable, treat return of "2"
// like a return of "1", indicating calibration complete.
//
// int SFO_MepDis_V5(int i);
// updates MEP_ScaleFactor[i] when HRPWM is not used
// - returns 1 when complete for the specified channel
// - returns 0 if not complete for the specified channel
//
// MEP_ScaleFactor[PWM_CH] is a global array variable used by the SFO library
//
// =======================================================================
// NOTE: For more information on using the SFO software library, see the
// High-Resolution Pulse Width Modulator (HRPWM) Reference Guide (spru924)
// =======================================================================
//
// This example is intended to explain the HRPWM capabilities. The code can be
// optimized for code efficiency. Refer to TI's Digital power application
// examples and TI Digital Power Supply software libraries for details.
//
// All ePWM1A-6A channels will have fine
// edge movement due to the HRPWM logic
//
// 5MHz PWM (for 150 MHz SYSCLKOUT), ePWMxA toggle high/low with MEP control on rising edge
// 3.33MHz PWM (for 100 MHz SYSCLKOUT), ePWMxA toggle high/low with MEP control on rising edge
//
// To load and run this example:
// 1. **!!IMPORTANT!!** - in SFO_V5.h, set PWM_CH to the max number of
// HRPWM channels plus one. For example, for the F28335, the
// maximum number of HRPWM channels is 6. 6+1=7, so set
// #define PWM_CH 7 in SFO_V5.h. (Default is 7)
// 2. Run this example at 150/100MHz SYSCLKOUT
// 3. Load the Example_2833xHRPWM_SFO.gel and observe variables in the watch window
// 4. Activate Real time mode
// 5. Run the code
// 6. Watch ePWM1-6 waveforms on a Oscillosope
// 7. In the watch window:
// Set the variable UpdateFine = 1 to observe the ePWMxA output
// with HRPWM capabilites (default)
// Observe the duty cycle of the waveform changes in fine MEP steps
// 8. In the watch window:
// Change the variable UpdateFine to 0, to observe the
// ePWMxA output without HRPWM capabilites
// Observe the duty cycle of the waveform changes in coarse steps of 10nsec.
//
// Watch Variables:
// UpdateFine
// MEP_ScaleFactor
// EPwm1Regs.CMPA.all
// EPwm2Regs.CMPA.all
// EPwm3Regs.CMPA.all
// EPwm4Regs.CMPA.all
// EPwm5Regs.CMPA.all
// EPwm6Regs.CMPA.all
//
//###########################################################################
// $TI Release: DSP2833x Header Files V1.01 $
// $Release Date: September 26, 2007 $
//###########################################################################
#include "DSP2833x_Device.h" // DSP2833x Device Headerfile
#include "DSP2833x_Examples.h" // DSP2833x Examples Headerfile
#include "DSP2833x_EPwm_defines.h" // useful defines for initialization
#include "SFO_V5.h" // SFO V5 library headerfile - required to use SFO library functions
// **!!IMPORTANT!!**
// UPDATE NUMBER OF HRPWM CHANNELS + 1 USED IN SFO_V5.H
// i.e. #define PWM_CH // F28335 has a maximum of 6 HRPWM channels (7=6+1)
// Declare your function prototypes here
//---------------------------------------------------------------
void HRPWM_Config(int);
void error (void);
// General System nets - Useful for debug
Uint16 UpdateFine, DutyFine, status, nMepChannel;
//====================================================================
// The following declarations are required in order to use the SFO
// library functions:
//
int MEP_ScaleFactor[PWM_CH]; // Global array used by the SFO library
// For n HRPWM channels + 1 for MEP_ScaleFactor[0]
// Array of pointers to EPwm register structures:
// *ePWM[0] is defined as dummy value not used in the example
volatile struct EPWM_REGS *ePWM[PWM_CH] =
{ &EPwm1Regs, &EPwm1Regs, &EPwm2Regs, &EPwm3Regs,
&EPwm4Regs, &EPwm5Regs, &EPwm6Regs};
//====================================================================
void main(void)
{
// Local variables
int i;
Uint32 temp;
int16 CMPA_reg_val, CMPAHR_reg_val;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// For this case just init GPIO pins for ePWM1-ePWM6
// This function is in the DSP2833x_EPwm.c file
InitEPwmGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// For this example, only initialize the ePWM
// Step 5. User specific code, enable interrupts:
UpdateFine = 1;
DutyFine = 0;
nMepChannel=1; // HRPWM diagnostics start on ePWM channel 1
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
EDIS;
// MEP_ScaleFactor variables intialization for SFO library functions
for(i=0;i<PWM_CH;i++)
{
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -