📄 example_2833xmcbsp_dlb_dma.c
字号:
//###########################################################################
//
// FILE: Example_2833xMCBSP_DLB_DMA.c
//
// TITLE: DSP2833x Device McBSP Digital Loop Back with DMA program
//
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// This program is a McBSP example that uses the internal loopback of
// the peripheral and utilizes the DMA to transfer data from one buffer
// to the McBSP, and then from the McBSP to another buffer.
//
// Initially, sdata[] is filled with values from 0x0000- 0x007F. The DMA
// moves the values in sdata[] one by one to the DXRx registers of the McBSP.
// These values are transmitted and subsequently received by the McBSP.
// Then, the DMA moves each data value to rdata[] as it is received by the McBSP.
//
// Three different serial word sizes can be tested.
//
// Before compiling this project:
// * Select the serial word size (8/16/32) by using
// the #define statements at the beginning of the code.
//
// The program loops forever after all values have been transferred to sdata.
// It is up to the user to stop the program.
//
//
// By default for the McBSP examples, the McBSP sample rate generator (SRG) input
// clock frequency is LSPCLK (150E6/4 or 100E6/4) assuming SYSCLKOUT = 150 MHz or
// 100 MHz respectively. If while testing, the SRG input frequency
// is changed, the #define MCBSP_SRG_FREQ (150E6/4 or 100E6/4) in the Mcbsp.c file must
// also be updated accordingly. This define is used to determine the Mcbsp initialization
// delay after the SRG is enabled, which must be at least 2 SRG clock cycles.
//
// Watch Variables:
// sdata
// rdata
//
//
//###########################################################################
// $TI Release: DSP2833x Header Files V1.01 $
// $Release Date: September 26, 2007 $
//###########################################################################
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
// Choose a word size. Uncomment one of the following lines
#define WORD_SIZE 8 // Run a loopback test in 8-bit mode
//#define WORD_SIZE 16 // Run a loopback test in 16-bit mode
//#define WORD_SIZE 32 // Run a loopback test in 32-bit mode
// Prototype statements for functions found within this file.
interrupt void local_D_INTCH1_ISR(void);
interrupt void local_D_INTCH2_ISR(void);
void mcbsp_init_dlb(void);
void init_dma(void);
void init_dma_32(void);
void start_dma(void);
void error(void);
// Place sdata and rdata buffers in DMA-accessible RAM (L4 for this example)
#pragma DATA_SECTION(sdata, "DMARAML4")
#pragma DATA_SECTION(rdata, "DMARAML4")
Uint16 sdata[128]; // Sent Data
Uint16 rdata[128]; // Recieved Data
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Setup only the GP I/O only for McBSP-A functionality
InitMcbspaGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // Allow access to EALLOW protected registers
PieVectTable.DINTCH1= &local_D_INTCH1_ISR;
PieVectTable.DINTCH2= &local_D_INTCH2_ISR;
EDIS; // Disable access to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// Step 5. User specific code, enable interrupts:
for (i=0; i<128; i++)
{
sdata[i] = i; // Fill sdata with values between 0 and 0x007F
rdata[i] = 0; // Initialize rdata to all 0x0000.
}
if (WORD_SIZE == 32)
{
init_dma_32(); // DMA Initialization for 32-bit transfers
} else
{
init_dma(); // 1. When using DMA, initialize DMA with peripheral interrupts first.
}
start_dma();
mcbsp_init_dlb(); // 2. Then initialize and release peripheral (McBSP) from Reset.
// Enable interrupts required for this example
PieCtrlRegs.PIECTRL.bit.ENPIE = 1; // Enable the PIE block
PieCtrlRegs.PIEIER6.bit.INTx5=1; // Enable PIE Group 6, INT 5
PieCtrlRegs.PIEIER6.bit.INTx6=1; // Enable PIE Group 6, INT 6
PieCtrlRegs.PIEIER7.bit.INTx1 = 1; // Enable PIE Group 7, INT 1 (DMA CH1)
PieCtrlRegs.PIEIER7.bit.INTx2 = 1; // Enable PIE Group 7, INT 2 (DMA CH2)
IER=0x60; // Enable CPU INT groups 6 and 7
EINT; // Enable Global Interrupts
// Step 6. IDLE loop. Just sit and loop forever (optional):
for(;;);
}
// Step 7. Insert all local Interrupt Service Routines (ISRs) and functions here:
void error(void)
{
asm(" ESTOP0"); // Test failed!! Stop!
for (;;);
}
void mcbsp_init_dlb()
{
McbspaRegs.SPCR2.all=0x0000; // Reset FS generator, sample rate generator & transmitter
McbspaRegs.SPCR1.all=0x0000; // Reset Receiver, Right justify word
McbspaRegs.SPCR1.bit.DLB = 1; // Enable DLB mode. Comment out for non-DLB mode.
McbspaRegs.MFFINT.all=0x0; // Disable all interrupts
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -