📄 example_2833xeqep_pos_speed.c
字号:
// TI File $Revision: /main/9 $
// Checkin $Date: August 16, 2007 10:37:57 $
//###########################################################################
//
// FILE: Example_2833xEqep_pos_speed_.c
//
// TITLE: EQEP Speed and Position measurement
//
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// This project uses fixed-point math. Be sure that the Code Composer Studio compiler
// is not configured for floating-point math (fixed-point is default).
//
// Test requires the following hardware connections from EPWM1 and
// GPIO pins (simulating QEP sensor) to QEP peripheral
//
// GPIO20/EQEP1A <- GPIO0/EPWM1A (simulates EQEP Phase A signal)
// GPIO21/EQEP1B <- GPIO1/EPWM1B (simulates EQEP Phase B signal)
// GPIO23/EQEP1I <- GPIO4 (simulates EQEP Index Signal)
//
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// This test will provide position measurement, speed measurement using the capture unit, and
// speed measurement using unit time out. This example uses the IQMath library. It is used
// merely to simplify high-precision calculations.
//
// See DESCRIPTION in Example_posspeed.c for more details on the calculations
// performed in this example.
//
// In addition to this file, the following files must be included in this project:
// Example_posspeed.c - includes all eQEP functions
// Example_EPwmSetup.c - sets up EPWM1A and EPWM1B as simulated QA and QB encoder signals
// Example_posspeed.h - includes initialization values for pos and speed structure
//
// Notes:
// * Maximum speed is configured to 6000rpm(BaseRpm)
// * Minimum speed is assumed at 10rpm for capture pre-scalar selection
// * Pole pair is configured to 2 (pole_pairs)
// * QEP Encoder resolution is configured to 4000counts/revolution (mech_scaler)
// which means: 4000/4 = 1000 line/revolution quadrature encoder (simulated by EPWM1)
// * EPWM1 (simulating QEP encoder signals) is configured for 5kHz frequency or 300 rpm
// (=4*5000 cnts/sec * 60 sec/min)/4000 cnts/rev)
// * 300 rpm EPWM1 speed will be measured by EQEP.
//
// SPEEDRPM_FR: High Speed Measurement is obtained by counting the QEP input pulses
// for 10ms (unit timer set to 100Hz).
//
// SPEEDRPM_FR = { (Position Delta)/10ms } * 60 rpm
//
//
// SPEEDRPM_PR: Low Speed Measurement is obtained by measuring time period of QEP edges.
// Time measurement is averaged over 64edges for better results and
// capture unit performs the time measurement using pre-scaled SYSCLK
//
// Note that pre-scaler for capture unit clock is selected such that
// capture timer does not overflow at the required minimum RPM speed
//
// Watch Variables: qep_posspeed.SpeedRpm_fr - Speed meas. in rpm using QEP position counter
// qep_posspeed.SpeedRpm_pr - Speed meas. in rpm using capture unit
// qep_posspeed.theta_mech - Motor mechanical angle (Q15)
// qep_posspeed.theta_elec - Motor electrical angle (Q15)
//
//###########################################################################
// Original Author S.D.
//
// $TI Release: DSP2833x Header Files V1.01 $
// $Release Date: September 26, 2007 $
//###########################################################################
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
#include "Example_posspeed.h" // Example specific Include file
void initEpwm();
interrupt void prdTick(void);
POSSPEED qep_posspeed=POSSPEED_DEFAULTS;
Uint16 Interrupt_Count = 0;
void main(void)
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// For this case only init GPIO for eQEP1 and ePWM1
// This function is found in DSP2833x_EQep.c
InitEQep1Gpio();
InitEPwm1Gpio();
EALLOW;
GpioCtrlRegs.GPADIR.bit.GPIO4 = 1; // GPIO4 as output simulates Index signal
GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // Normally low
EDIS;
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.EPWM1_INT= &prdTick;
EDIS; // This is needed to disable write to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
initEpwm(); // This function exists in Example_EPwmSetup.c
// Step 5. User specific code, enable interrupts:
// Enable CPU INT1 which is connected to CPU-Timer 0:
IER |= M_INT3;
// Enable TINT0 in the PIE: Group 3 interrupt 1
PieCtrlRegs.PIEIER3.bit.INTx1 = 1;
// Enable global Interrupts and higher priority real-time debug events:
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
qep_posspeed.init(&qep_posspeed);
for(;;)
{
}
}
interrupt void prdTick(void) // EPWM1 Interrupts once every 4 QCLK counts (one period)
{ Uint16 i;
// Position and Speed measurement
qep_posspeed.calc(&qep_posspeed);
// Control loop code for position control & Speed contol
Interrupt_Count++;
if (Interrupt_Count==1000) // Every 1000 interrupts(4000 QCLK counts or 1 rev.)
{
EALLOW;
GpioDataRegs.GPASET.bit.GPIO4 = 1; // Pulse Index signal (1 pulse/rev.)
for (i=0; i<700; i++){
}
GpioDataRegs.GPACLEAR.bit.GPIO4 = 1;
Interrupt_Count = 0; // Reset count
EDIS;
}
// Acknowledge this interrupt to receive more interrupts from group 1
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
EPwm1Regs.ETCLR.bit.INT=1;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -