📄 times.m
字号:
function z = times(x,y,flag)
% @MPOL/TIMES - Multiply entrywise MPOL objects
%
% TIMES(X,Y) or X.*Y is the entrywise product.
% X and Y must have the same dimensions unless one is a scalar.
% D. Henrion, 30 November 2003
% Last modified on 27 March 2006
% With a third input argument reduction is not carried out
% Used to speed up repeated matrix operations
noreduce = (nargin == 3);
if any(size(x) ~= size(y))
% Matrix times scalar
if max(size(x)) == 1
z = mpol(zeros(size(y)));
for r = 1:size(z,1)
for c = 1:size(z,2)
z(r,c) = times(x,y(r,c));
end
end
elseif max(size(y)) == 1
z = mpol(zeros(size(x)));
for r = 1:size(z,1)
for c = 1:size(z,2)
z(r,c) = times(x(r,c),y);
end
end
else
error('Inner matrix dimensions must agree')
end
elseif max(size(x)) > 1
% Matrix times matrix
z = mpol(zeros(size(x)));
for r = 1:size(x,1)
for c = 1:size(x,2)
z(r,c) = times(x(r,c),y(r,c));
end
end
else
% Scalar times scalar
if ~isa(x,'mpol')
if ~isa(x,'double')
error('Invalid first input argument')
end
% First argument is constant
z = y;
z.coef = z.coef*x;
elseif ~isa(y,'mpol')
if ~isa(y,'double')
error('Invalid second input argument')
end
% Second argument is constant
z = x;
z.coef = z.coef*y;
else
% Both arguments are polynomial
z = mpol(0);
z.var = [x.var y.var];
nvarx = size(x.pow,2); nvary = size(y.pow,2); nvarz = nvarx+nvary;
nmonx = size(x.coef,1); nmony = size(y.coef,1); nmonz = nmonx*nmony;
z.pow = zeros(nmonz,nvarz);
z.coef = zeros(nmonz,1);
for i = 1:size(x.coef,1)
z.pow(1+(i-1)*nmony:i*nmony,1:nvarx) = ones(nmony,1)*x.pow(i,:);
z.pow(1+(i-1)*nmony:i*nmony,nvarx+1:nvarz) = y.pow;
z.coef(1+(i-1)*nmony:i*nmony) = x.coef(i)*y.coef;
end
if ~noreduce
z = reduce(z);
end
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -