📄 comp_dgt_fac.m
字号:
function cout=comp_dgt_fac(f,gf,a,M)%COMP_DGT_FAC Full-window factorization of a Gabor matrix.% Usage: c=comp_dgt_fac(f,gf,a,M);%% Input parameters:% f : Factored input data% gf : Factorization of window (from facgabm).% a : Length of time shift.% M : Number of channels.% Output parameters:% c : M x N*W*R array of coefficients, where N=L/a%% Do not call this function directly, use DGT instead.% This function does not check input parameters!%% The length of f and gamma must match.%% If input is a matrix, the transformation is applied to% each column.%% This function does not handle the multidim case. Take care before% calling this.%% REFERENCES:% T. Strohmer. Numerical algorithms for discrete Gabor expansions. In% H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and% Algorithms, chapter 8, pages 267-294. Birkhäuser, Boston, 1998.% % P. L. Søndergaard. An efficient algorithm for the discrete Gabor% transform using full length windows. IEEESignalProcess.Letters,% submitted for publication, 2007.% This program is free software: you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation, either version 3 of the License, or% (at your option) any later version.% % This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the% GNU General Public License for more details.% % You should have received a copy of the GNU General Public License% along with this program. If not, see <http://www.gnu.org/licenses/>.% Author : Peter Soendergaard.L=size(f,1);W=size(f,2);LR=numel(gf);R=LR/L;N=L/a;[c,h_a,h_m]=gcd(a,M);h_a=-h_a;p=a/c;q=M/c;d=N/q;ff=zeros(p,q*W,c,d);if p==1 % --- integer oversampling --- if (c==1) && (d==1) && (W==1) && (R==1) % --- Short time Fourier transform of single signal --- % This is used for spectrograms of short signals. ff(1,:,1,1)=f(:); else for s=0:d-1 for r=0:c-1 for l=0:q-1 ff(1,l+1:q:W*q,r+1,s+1)=f(r+s*M+l*c+1,:); end; end; end; end;else % --- rational oversampling --- % Set up the small matrices % The r-loop (runs up to c) has been vectorized for w=0:W-1 for s=0:d-1 for l=0:q-1 for k=0:p-1 ff(k+1,l+1+w*q,:,s+1)=f((1:c)+mod(k*M+s*p*M-l*h_a*a,L),w+1); end; end; end; end;end;% This version uses matrix-vector products and ffts% fft themif d>1 ff=fft(ff,[],4);end;C=zeros(q*R,q*W,c,d);for r=0:c-1 for s=0:d-1 GM=reshape(gf(:,r+s*c+1),p,q*R); FM=reshape(ff(:,:,r+1,s+1),p,q*W); C(:,:,r+1,s+1)=GM'*FM; end;end;% Inverse fftif d>1 C=ifft(C,[],4);end;% Place the resultcout=zeros(M,N,R,W);if p==1 % --- integer oversampling --- if (c==1) && (d==1) && (W==1) && (R==1) % --- Short time Fourier transform of single signal --- % This is used for spectrograms of short signals. for l=0:q-1 cout(l+1,mod((0:q-1)+l,N)+1,1,1)=C(:,l+1,1,1); end; else % The r-loop (runs up to c) has been vectorized for rw=0:R-1 for w=0:W-1 for s=0:d-1 for l=0:q-1 for u=0:q-1 cout((1:c)+l*c,mod(u+s*q+l,N)+1,rw+1,w+1)=C(u+1+rw*q,l+1+w*q,:,s+1); end; end; end; end; end; end;else % Rational oversampling % The r-loop (runs up to c) has been vectorized for rw=0:R-1 for w=0:W-1 for s=0:d-1 for l=0:q-1 for u=0:q-1 cout((1:c)+l*c,mod(u+s*q-l*h_a,N)+1,rw+1,w+1)=C(u+1+rw*q,l+1+w*q,:,s+1); end; end; end; end; end;end;cout=reshape(cout,M,N*W*R);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -