⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dctiv.m

📁 Matlab时频分析工具箱,希望能对大家有所帮助啊
💻 M
字号:
function c=dctiv(f,L,dim)%DCTIV  Discrete Consine Transform type IV%   Usage:  c=dctiv(f);%%   DCTIV(f) computes the discrete consine transform of type IV of the%   input signal f. If f is a matrix, then the transformation is applied to%   each column.%%   DCTIV(f,L) zero-pads or truncates f to length L before doing the%   transformation.%%   DCTIV(f,[],dim) applies the transformation along dimension dim. %   DCTIV(f,L,dim) does the same, but pads or truncates to length L.% This program is free software: you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation, either version 3 of the License, or% (at your option) any later version.% % This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the% GNU General Public License for more details.% % You should have received a copy of the GNU General Public License% along with this program.  If not, see <http://www.gnu.org/licenses/>.%   The transform is real (output is real if input is real) and%   it is orthonormal. It is is own inverse.%%   Let f be a signal of length _L and let c=DCTIV(f). Then%M%M                         L-1%M    c(n+1) = sqrt(2/L) * sum f(m+1)*cos(pi*n*(m+.5)/L) %M                         m=0 %F  \[%F  c\left(n+1\right)=\sqrt{\frac{2}{L}}\sum_{m=0}^{L-1}f\left(m+1\right)\cos\left(\frac{\pi}{L}\left(n+\frac{1}{2}\right)\left(m+\frac{1}{2}\right)\right)%F  \]%   SEE ALSO:  DCTII, DCTIII, DSTII%%R  rayi90 wi94error(nargchk(1,3,nargin));if nargin<3  dim=[];end;if nargin<2  L=[];end;[f,L,Ls,W,dim,permutedsize,order]=assert_sigreshape_pre(f,L,dim,'DCTIV');if ~isempty(L)  f=postpad(f,L);end;s1=zeros(2*L,W);c=zeros(L,W);m1=1/sqrt(2)*exp(-(0:L-1)*pi*i/(2*L)).';m2=1/sqrt(2)*exp((1:L)*pi*i/(2*L)).';for w=1:W  s1(:,w)=[m1.*f(:,w);flipud(m2).*f(L:-1:1,w)];end;  s1=exp(-pi*i/(4*L))*fft(s1)/sqrt(2*L);% This could be done by a repmat instead.for w=1:W  c(:,w)=s1(1:L,w).*m1+s1(2*L:-1:L+1,w).*m2;end;if isreal(f)  c=real(c);end;c=assert_sigreshape_post(c,dim,permutedsize,order);% This is a slow, but convenient way of expressing the algorithm.%R=1/sqrt(2)*[diag(exp(-(0:L-1)*pi*i/(2*L)));...%	     flipud(diag(exp((1:L)*pi*i/(2*L))))];  %c=exp(-pi*i/(4*L))*R.'*fft(R*f)/sqrt(2*L);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -