📄 dstii.m
字号:
function c=dstii(f,L,dim)%DSTII Discrete Sine Transform type II% Usage: c=dstii(f);% c=dstii(f,L);% c=dstii(f,[],dim);% c=dstii(f,L,dim);%% DSTII(f) computes the discrete sine transform of type II of the% input signal f. If f is a matrix, then the transformation is applied to% each column. For N-D arrays, the transformation is applied to the first% dimension.%% DSTII(f,L) zero-pads or truncates f to length L before doing the% transformation.%% DSTII(f,[],dim) applies the transformation along dimension dim. % DSTII(f,L,dim) does the same, but pads or truncates to length L.%% The transform is real (output is real if input is real) and% it is orthonormal.%% The inverse transform of DSTII is DSTIII.%% Let f be a signal of length L, let c=DSTII(f) and define the vector% w of length L by % w = [1 1 1 1 ... 1/sqrt(2)]% Then % % L-1% c(n+1) = sqrt(2/L) * sum w(n+1)*f(m+1)*sin(pi*n*(m+.5)/L) % m=0 % SEE ALSO: DCTII, DSTIII, DSTIV%% REFERENCES:% K. Rao and P. Yip. Discrete Cosine Transform, Algorithms, Advantages,% Applications. Academic Press, 1990.% % M. V. Wickerhauser. Adapted wavelet analysis from theory to software.% Wellesley-Cambridge Press, Wellesley, MA, 1994.% This program is free software: you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation, either version 3 of the License, or% (at your option) any later version.% % This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the% GNU General Public License for more details.% % You should have received a copy of the GNU General Public License% along with this program. If not, see <http://www.gnu.org/licenses/>.error(nargchk(1,3,nargin));if nargin<3 dim=[];end;if nargin<2 L=[];end; [f,L,Ls,W,dim,permutedsize,order]=assert_sigreshape_pre(f,L,dim,'DSTII'); if ~isempty(L) f=postpad(f,L);end;c=zeros(L,W);m1=1/sqrt(2)*exp(-(1:L)*pi*i/(2*L)).';m1(L)=-i; m2=-1/sqrt(2)*exp((1:L-1)*pi*i/(2*L)).';s1=i*fft([f;-flipud(f)])/sqrt(L)/2;% This could be done by a repmat instead.for w=1:W c(:,w)=s1(2:L+1,w).*m1+[s1(2*L:-1:L+2,w).*m2;0];end;if isreal(f) c=real(c);end;c=assert_sigreshape_post(c,dim,permutedsize,order);% This is a slow, but convenient way of expressing the above algorithm.%R=1/sqrt(2)*[zeros(1,L); ...% diag(exp((1:L)*pi*i/(2*L)));... % [flipud(diag(-exp(-(1:L-1)*pi*i/(2*L)))),zeros(L-1,1)]];%R(L+1,L)=i;%c=i*(R'*fft([f;-flipud(f)])/sqrt(L)/2);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -