📄 rfc1112.txt
字号:
the total number of Reports transmitted, two techniques are used:
1. When a host receives a Query, rather than sending Reports
immediately, it starts a report delay timer for each of its
group memberships on the network interface of the incoming
Query. Each timer is set to a different, randomly-chosen
value between zero and D seconds. When a timer expires, a
Report is generated for the corresponding host group. Thus,
Reports are spread out over a D second interval instead of
all occurring at once.
2. A Report is sent with an IP destination address equal to the
host group address being reported, and with an IP
time-to-live of 1, so that other members of the same group on
the same network can overhear the Report. If a host hears a
Report for a group to which it belongs on that network, the
host stops its own timer for that group and does not generate
a Report for that group. Thus, in the normal case, only one
Report will be generated for each group present on the
network, by the member host whose delay timer expires first.
Note that the multicast routers receive all IP multicast
datagrams, and therefore need not be addressed explicitly.
Further note that the routers need not know which hosts
belong to a group, only that at least one host belongs to a
group on a particular network.
There are two exceptions to the behavior described above. First, if
a report delay timer is already running for a group membership when a
Query is received, that timer is not reset to a new random value, but
rather allowed to continue running with its current value. Second, a
report delay timer is never set for a host's membership in the all-
hosts group (224.0.0.1), and that membership is never reported.
Deering [Page 12]
RFC 1112 Host Extensions for IP Multicasting August 1989
If a host uses a pseudo-random number generator to compute the
reporting delays, one of the host's own individual IP address should
be used as part of the seed for the generator, to reduce the chance
of multiple hosts generating the same sequence of delays.
A host should confirm that a received Report has the same IP host
group address in its IP destination field and its IGMP group address
field, to ensure that the host's own Report is not cancelled by an
erroneous received Report. A host should quietly discard any IGMP
message of type other than Host Membership Query or Host Membership
Report.
Multicast routers send Queries periodically to refresh their
knowledge of memberships present on a particular network. If no
Reports are received for a particular group after some number of
Queries, the routers assume that that group has no local members and
that they need not forward remotely-originated multicasts for that
group onto the local network. Queries are normally sent infrequently
(no more than once a minute) so as to keep the IGMP overhead on hosts
and networks very low. However, when a multicast router starts up,
it may issue several closely-spaced Queries in order to build up its
knowledge of local memberships quickly.
When a host joins a new group, it should immediately transmit a
Report for that group, rather than waiting for a Query, in case it is
the first member of that group on the network. To cover the
possibility of the initial Report being lost or damaged, it is
recommended that it be repeated once or twice after short delays. (A
simple way to accomplish this is to act as if a Query had been
received for that group only, setting the group's random report delay
timer. The state transition diagram below illustrates this
approach.)
Note that, on a network with no multicast routers present, the only
IGMP traffic is the one or more Reports sent whenever a host joins a
new group.
State Transition Diagram
IGMP behavior is more formally specified by the state transition
diagram below. A host may be in one of three possible states, with
respect to any single IP host group on any single network interface:
- Non-Member state, when the host does not belong to the group
on the interface. This is the initial state for all
memberships on all network interfaces; it requires no storage
in the host.
Deering [Page 13]
RFC 1112 Host Extensions for IP Multicasting August 1989
- Delaying Member state, when the host belongs to the group on
the interface and has a report delay timer running for that
membership.
- Idle Member state, when the host belongs to the group on the
interface and does not have a report delay timer running for
that membership.
There are five significant events that can cause IGMP state
transitions:
- "join group" occurs when the host decides to join the group on
the interface. It may occur only in the Non-Member state.
- "leave group" occurs when the host decides to leave the group
on the interface. It may occur only in the Delaying Member
and Idle Member states.
- "query received" occurs when the host receives a valid IGMP
Host Membership Query message. To be valid, the Query message
must be at least 8 octets long, have a correct IGMP
checksum and have an IP destination address of 224.0.0.1.
A single Query applies to all memberships on the
interface from which the Query is received. It is ignored for
memberships in the Non-Member or Delaying Member state.
- "report received" occurs when the host receives a valid IGMP
Host Membership Report message. To be valid, the Report
message must be at least 8 octets long, have a correct IGMP
checksum, and contain the same IP host group address in its IP
destination field and its IGMP group address field. A Report
applies only to the membership in the group identified by the
Report, on the interface from which the Report is received.
It is ignored for memberships in the Non-Member or Idle Member
state.
- "timer expired" occurs when the report delay timer for the
group on the interface expires. It may occur only in the
Delaying Member state.
All other events, such as receiving invalid IGMP messages, or IGMP
messages other than Query or Report, are ignored in all states.
There are three possible actions that may be taken in response to the
above events:
- "send report" for the group on the interface.
Deering [Page 14]
RFC 1112 Host Extensions for IP Multicasting August 1989
- "start timer" for the group on the interface, using a random
delay value between 0 and D seconds.
- "stop timer" for the group on the interface.
In the following diagram, each state transition arc is labelled with
the event that causes the transition, and, in parentheses, any
actions taken during the transition.
________________
| |
| |
| |
| |
--------->| Non-Member |<---------
| | | |
| | | |
| | | |
| |________________| |
| | |
| leave group | join group | leave group
| (stop timer) |(send report, |
| | start timer) |
________|________ | ________|________
| |<--------- | |
| | | |
| |<-------------------| |
| | query received | |
| Delaying Member | (start timer) | Idle Member |
| |------------------->| |
| | report received | |
| | (stop timer) | |
|_________________|------------------->|_________________|
timer expired
(send report)
The all-hosts group (address 224.0.0.1) is handled as a special case.
The host starts in Idle Member state for that group on every
interface, never transitions to another state, and never sends a
report for that group.
Protocol Parameters
The maximum report delay, D, is 10 seconds.
Deering [Page 15]
RFC 1112 Host Extensions for IP Multicasting August 1989
APPENDIX II. HOST GROUP ADDRESS ISSUES
This appendix is not part of the IP multicasting specification, but
provides background discussion of several issues related to IP host
group addresses.
Group Address Binding
The binding of IP host group addresses to physical hosts may be
considered a generalization of the binding of IP unicast addresses.
An IP unicast address is statically bound to a single local network
interface on a single IP network. An IP host group address is
dynamically bound to a set of local network interfaces on a set of IP
networks.
It is important to understand that an IP host group address is NOT
bound to a set of IP unicast addresses. The multicast routers do not
need to maintain a list of individual members of each host group.
For example, a multicast router attached to an Ethernet need
associate only a single Ethernet multicast address with each host
group having local members, rather than a list of the members'
individual IP or Ethernet addresses.
Allocation of Transient Host Group Addresses
This memo does not specify how transient group address are allocated.
It is anticipated that different portions of the IP transient host
group address space will be allocated using different techniques.
For example, there may be a number of servers that can be contacted
to acquire a new transient group address. Some higher-level
protocols (such as VMTP, specified in RFC-1045) may generate higher-
level transient "process group" or "entity group" addresses which are
then algorithmically mapped to a subset of the IP transient host
group addresses, similarly to the way that IP host group addresses
are mapped to Ethernet multicast addresses. A portion of the IP
group address space may be set aside for random allocation by
applications that can tolerate occasional collisions with other
multicast users, perhaps generating new addresses until a suitably
"quiet" one is found.
In general, a host cannot assume that datagrams sent to any host
group address will reach only the intended hosts, or that datagrams
received as a member of a transient host group are intended for the
recipient. Misdelivery must be detected at a level above IP, using
higher-level identifiers or authentication tokens. Information
transmitted to a host group address should be encrypted or governed
by administrative routing controls if the sender is concerned about
unwanted listeners.
Deering [Page 16]
RFC 1112 Host Extensions for IP Multicasting August 1989
Author's Address
Steve Deering
Stanford University
Computer Science Department
Stanford, CA 94305-2140
Phone: (415) 723-9427
EMail: deering@PESCADERO.STANFORD.EDU
Deering [Page 17]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -