📄 sparam.m
字号:
% sparam.m - stability parameters of two-port
%
% Usage: [K,mu,D,B1,B2,C1,C2,D1,D2] = sparam(S)
%
% S = 2x2 scattering matrix of two-port
%
% K,mu,B1,B2 = stability parameters
% D = abs(det(S))
% C1,C2,D1,D2 = related parameters
%
% notes: necessary and sufficient conditions for stability:
% mu > 1, or
% K > 1 and B1 > 0, or
% K > 1 and B2 > 0, or
% K > 1 and |D| < 1, D = det(S), or
% K > 1 and |S12*S21| < 1-|S11|^2, or
% K > 1 and |S12*S21| < 1-|S22|^2, or
%
% M. L. Edwards and J. H. Sinsky, "A New Criterion for Linear 2-Port Stability Using a Single
% Geometrically-Derived Parameter," IEEE Trans. Microwave Th. Tech, MTT-40, 2303 (1992).
% S. J. Orfanidis - 2000 - www.ece.rutgers.edu/~orfanidi/ewa
function [K,mu,D,B1,B2,C1,C2,D1,D2] = sparam(S)
if nargin==0, help sparam; return; end
D = det(S);
mu = (1 - abs(S(1,1))^2) / (abs(S(2,2) - D*conj(S(1,1))) + abs(S(1,2)*S(2,1)));
B1 = 1 + abs(S(1,1))^2 - abs(S(2,2))^2 - abs(D)^2;
B2 = 1 + abs(S(2,2))^2 - abs(S(1,1))^2 - abs(D)^2;
if abs(S(1,2)*S(2,1))==0,
K = Inf;
else
K = (1 - abs(S(1,1))^2 - abs(S(2,2))^2 + abs(D)^2)/abs(2*S(1,2)*S(2,1));
end
C1 = S(1,1) - D * conj(S(2,2));
C2 = S(2,2) - D * conj(S(1,1));
D1 = abs(S(1,1))^2 - abs(D)^2;
D2 = abs(S(2,2))^2 - abs(D)^2;
D = abs(D);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -