⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 compilesos.m

📁 求解线性矩阵不等式简单方便--与LMI工具箱相比
💻 M
📖 第 1 页 / 共 3 页
字号:
function [F,obj,m] = solvesos(F,obj,options,params,candidateMonomials)
%COMPILESOS Sum of squares decomposition
%
%    [F,obj,m] = compilesos(F,h,options,params,monomials) drives the SOS
%    problem without actually solving it
% 
% See also SOLVESOS

%% Time YALMIP
yalmip_time = clock;

% ************************************************
%% Check #inputs
% ************************************************
if nargin<5
    candidateMonomials = [];
    if nargin<4
        params = [];
        if nargin<3
            options = sdpsettings;
            if nargin<2
                obj = [];
                if nargin<1
                    help solvesos
                    return
                end
            end
        end
    end
end

if isempty(options)
    options = sdpsettings;
end

% Lazy syntax (not official...)
if nargin==1 & isa(F,'sdpvar')
    F = set(sos(F));
end

if ~isempty(options)
    if options.sos.numblkdg
        [sol,m,Q,residuals,everything] = solvesos_find_blocks(F,obj,options,params,candidateMonomials);
        return
    end
end

% *************************************************************************
%% Extract all SOS constraints and candidate monomials
% *************************************************************************
if ~any(is(F,'sos'))
    error('At-least one constraint should be an SOS constraints!');
end
p = [];
ranks = [];
for i = 1:length(F)
    if is(F(i),'sos')
        pi = sdpvar(F(i));
        p{end+1} = pi;
        ranks(end+1) = getsosrank(pi); % Desired rank : Experimental code
    end
end
if isempty(candidateMonomials)
    for i = 1:length(F)
        candidateMonomials{i}=[];
    end
elseif isa(candidateMonomials,'sdpvar')
    cM=candidateMonomials;
    candidateMonomials={};
    for i = 1:length(p)
        candidateMonomials{i}=cM;
    end
elseif isa(candidateMonomials,'cell')
    if length(p)~=length(candidateMonomials)
        error('Dimension mismatch between the candidate monomials and the number of SOS constraints');
    end
end

% *************************************************************************
%% Get the parametric constraints
% *************************************************************************
F_original = F;
F_parametric = F(find(~is(F,'sos')));
if isempty(F_parametric)
    F_parametric = set([]);
end

% *************************************************************************
%% Expand the parametric constraints
% *************************************************************************
if ~isempty(yalmip('extvariables'))
    [F_parametric,failure] = expandmodel(F_parametric,obj,options);
    F_parametric = expanded(F_parametric,1);
    obj = expanded(obj,1);    
    if failure
        Q{1} = [];m{1} = [];residuals = [];everything = [];
        sol.yalmiptime = etime(clock,yalmip_time);
        sol.solvertime = 0;
        sol.info = yalmiperror(14,'YALMIP');
        sol.problem = 14;
    end
end

if ~isempty(params)
    if ~isa(params,'sdpvar')
        error('Fourth argment should be a SDPVAR variable or empty')
    end
end

% *************************************************************************
% Collect all possible parametric variables
% *************************************************************************
ParametricVariables = uniquestripped([depends(obj) depends(F_parametric) depends(params)]);

if options.verbose>0;
    disp('-------------------------------------------------------------------------');
    disp('YALMIP SOS module started...');
    disp('-------------------------------------------------------------------------');
end

% *************************************************************************
%% INITIALIZE SOS-DECOMPOSITIONS SDP CONSTRAINTS
% *************************************************************************
F_sos = set([]);

% *************************************************************************
%% FIGURE OUT ALL USED PARAMETRIC VARIABLES
% *************************************************************************
AllVariables =  uniquestripped([depends(obj) depends(F_original) depends(F_parametric)]);
ParametricVariables = intersect(ParametricVariables,AllVariables);
MonomVariables = setdiff(AllVariables,ParametricVariables);
params = recover(ParametricVariables);
if isempty(MonomVariables)
    error('No independent variables? Perhaps you added a constraint set(p(x)) when you meant set(sos(p(x)))');
end
if options.verbose>0;disp(['Detected ' num2str(length(ParametricVariables)) ' parametric variables and ' num2str(length(MonomVariables)) ' independent variables.']);end

% ************************************************
%% ANY BMI STUFF
% ************************************************
NonLinearParameterization = 0;
if ~isempty(ParametricVariables)
    monomtable = yalmip('monomtable');
    ParametricMonomials = monomtable(uniquestripped([getvariables(obj) getvariables(F_original)]),ParametricVariables);
    if any(sum(abs(ParametricMonomials),2)>1)
        NonLinearParameterization = 1;
    end
end

% ************************************************
%% ANY INTEGER DATA
% ************************************************
IntegerData = 0;
if ~isempty(ParametricVariables)
    globalInteger =  [yalmip('binvariables') yalmip('intvariables')];    
    integerVariables = getvariables(F_parametric(find(is(F_parametric,'binary') | is(F_parametric,'integer'))));
    integerVariables = [integerVariables intersect(ParametricVariables,globalInteger)];
    integerVariables = intersect(integerVariables,ParametricVariables);
    IntegerData = ~isempty(integerVariables);
end

% ************************************************
%% ANY UNCERTAIN DATA
% ************************************************
UncertainData = 0;
if ~isempty(ParametricVariables)
    UncertainData = any(is(F_parametric,'uncertain'));  
end

% ************************************************
%% DISPLAY WHAT WE FOUND
% ************************************************
if options.verbose>0 & ~isempty(F_parametric)
    nLP = 0;
    nEQ = 0;
    nLMI = sum(full(is(F_parametric,'lmi')) &  full(~is(F_parametric,'element-wise'))); %FULL due to bug in ML 7.0.1
    for i = 1:length(F_parametric)
        if is(F_parametric,'element-wise')
            nLP = nLP + prod(size(F_parametric(i)));
        end
        if is(F_parametric,'equality')
            nEQ = nEQ + prod(size(F_parametric(i)));
        end
    end
    disp(['Detected ' num2str(full(nLP)) ' linear inequalities, ' num2str(full(nEQ)) ' equality constraints and ' num2str(full(nLMI)) ' LMIs.']);
end

% ************************************************
%% IMAGE OR KERNEL REPRESENTATION?
% ************************************************
noRANK = all(isinf(ranks));
switch options.sos.model
    case 0
        constraint_classes = constraintclass(F);
        noCOMPLICATING = ~any(ismember([7 8 9 10 12 13 14 15],constraint_classes));
        if noCOMPLICATING & ~NonLinearParameterization & noRANK & ~IntegerData
            options.sos.model = 1;
            if options.verbose>0;disp('Using kernel representation (options.sos.model=1).');end
        else
            if NonLinearParameterization
                if options.verbose>0;disp('Using image representation (options.sos.model=2). Nonlinear parameterization found');end
            elseif ~noRANK
                if options.verbose>0;disp('Using image representation (options.sos.model=2). SOS-rank constraint was found.');end
            elseif IntegerData
                if options.verbose>0;disp('Using image representation (options.sos.model=2). Integrality constraint was found.');end
            elseif UncertainData
                if options.verbose>0;disp('Using image representation (options.sos.model=2). Uncertain data was found.');end                
            else
                if options.verbose>0;disp('Using image representation (options.sos.model=2). Integer data, KYPs or similar was found.');end
            end
            options.sos.model = 2;
        end
    case 1
        if NonLinearParameterization
            if options.verbose>0;disp('Switching to image model due to nonlinear parameterization (not supported in kernel model).');end
            options.sos.model = 2;
        end
        if ~noRANK
            if options.verbose>0;disp('Switching to image model due to SOS-rank constraints (not supported in kernel model).');end
            options.sos.model = 2;
        end
        if IntegerData
            if options.verbose>0;disp('Switching to image model due to integrality constraints (not supported in kernel model).');end
            options.sos.model = 2;
        end        
    case 3
    otherwise
end

if ~isempty(yalmip('extvariables')) & options.sos.model == 2 & nargin<4
    disp(' ')
    disp('**Using nonlinear operators in SOS problems can cause problems.')
    disp('**Please specify all parametric variables using the fourth argument');
    disp(' ');
end

% ************************************************
%% SKIP DIAGONAL INCONSISTENCY FOR PARAMETRIC MODEL
% ************************************************
if ~isempty(params) & options.sos.inconsistent
    if options.verbose>0;disp('Turning off inconsistency based reduction (not supported in parametric models).');end
    options.sos.inconsistent = 0;
end

% ************************************************
%% INITIALIZE OBJECTIVE
% ************************************************
if ~isempty(obj)
    options.sos.traceobj = 0;
end
parobj = obj;
obj    = [];

% ************************************************
%% SCALE SOS CONSTRAINTS 
% ************************************************
if options.sos.scale
    for constraint = 1:length(p)
        normp(constraint) = sqrt(norm(full(getbase(p{constraint}))));
        p{constraint} = p{constraint}/normp(constraint);
        sizep(constraint) = size(p{constraint},1);
    end
else
    normp = ones(length(p),1);
end

% ************************************************
%% Some stuff not supported for
%  matrix valued SOS yet, turn off for safety
% ************************************************
for constraint = 1:length(p)
    sizep(constraint) = size(p{constraint},1);
end
if any(sizep>1)
    options.sos.postprocess = 0;
    options.sos.reuse = 0;
end

% ************************************************
%% SKIP CONGRUENCE REDUCTION WHEN SOS-RANK
% ************************************************
if ~all(isinf(ranks))
    options.sos.congruence = 0;
end

% ************************************************
%% Create an LP model to speed up things in Newton
%  polytope reduction
% ************************************************
if options.sos.newton
    temp=sdpvar(1,1);
    tempops = options;
    tempops.solver = 'cdd,glpk,*';  % CDD is generally robust on these problems
    tempops.verbose = 0;
    tempops.saveduals = 0;
    [aux1,aux2,aux3,LPmodel] = export(set(temp>0),temp,tempops);   
else
    LPmodel = [];
end


% ************************************************
%% LOOP THROUGH ALL SOS CONSTRAINTS
% ************************************************
for constraint = 1:length(p)
    % *********************************************
    %% FIND THE VARIABLES IN p, SORT, UNIQUE ETC
    % *********************************************
    if options.verbose>1;disp(['Creating SOS-description ' num2str(constraint) '/' num2str(length(p)) ]);end

    pVariables = depends(p{constraint});
    AllVariables = uniquestripped([pVariables ParametricVariables]);
    MonomVariables = setdiff1D(pVariables,ParametricVariables);
    x = recover(MonomVariables);
    z = recover(AllVariables);
    MonomIndicies = find(ismember(AllVariables,MonomVariables));
    ParametricIndicies = find(ismember(AllVariables,ParametricVariables));

    if isempty(MonomIndicies)
        % This is the case set(sos(t)) where t is a parametric (matrix) variable
        % This used to create an error message befgore to avoid some silly
        % bug in the model generation. Creating this error message is
        % stupid, but at the same time I can not remember where the bug was
        % and I have no regression test  for this case. To avoid
        % introducing same bug again by mistake, I create all data
        % specifically for this case        
        previous_exponent_p_monoms = [];%exponent_p_monoms;
        n = length(p{constraint});
        A_basis = getbase(sdpvar(n,n,'full'));d = find(triu(ones(n)));A_basis = A_basis(d,2:end);
        BlockedA{constraint} = {A_basis};
        Blockedb{constraint} = p{constraint}(d);        
        BlockedN{constraint} = {zeros(1,0)};
        Blockedx{constraint} = x;
        Blockedvarchange{constraint}=zeros(1,0);    
        continue
        %  error('You have constraints of the type set(sos(f(parametric_variables))). Please use set(f(parametric_variables) > 0) instead')
    end

    % *********************************************
    %% Express p in monimials and coefficients  
    % *********************************************
    [exponent_p,p_base] = getexponentbase(p{constraint},z);
    
    % *********************************************
    %% Powers for user defined candidate monomials
    % (still experimental)
    % *********************************************
    if ~all(cellfun('isempty',candidateMonomials))
        exponent_c = [];
        if isa(candidateMonomials{constraint},'cell')            
            for i = 1:length(candidateMonomials{constraint})
                 exponent_c{i} = getexponentbase(candidateMonomials{constraint}{i},z);
                 exponent_c{i} = exponent_c{i}(:,MonomIndicies);
            end
        else
            exponent_c{1} = getexponentbase(candidateMonomials{constraint},z);
            exponent_c{1} = exponent_c{1}(:,MonomIndicies);
        end
    else
        exponent_c = [];
    end

    % *********************************************
    %% STUPID PROBLEM WITH ODD HIGHEST POWER?...
    % *********************************************
    if isempty(ParametricIndicies)
        max_degrees = max(exponent_p(:,MonomIndicies),[],1);
        bad_max = any(max_degrees-fix((max_degrees/2))*2);
        if bad_max
            for i = 1:length(p)
                Q{i}=[];
                m{i}=[];
            end
            residuals=[];
            everything = [];
            sol.yalmiptime = etime(clock,yalmip_time);
            sol.solvertime = 0;
            sol.info = yalmiperror(1,'YALMIP');
            sol.problem = 2;
            return
        end
    end

    % *********************************************
    %% Can we make a smart variable change (no code)
    % *********************************************
    exponent_p_monoms = exponent_p(:,MonomIndicies);
    varchange = ones(1,size(MonomIndicies,2));

    % *********************************************
    %% Unique monoms (copies due to parametric terms)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -