📄 compilesos.m
字号:
function [F,obj,m] = solvesos(F,obj,options,params,candidateMonomials)
%COMPILESOS Sum of squares decomposition
%
% [F,obj,m] = compilesos(F,h,options,params,monomials) drives the SOS
% problem without actually solving it
%
% See also SOLVESOS
%% Time YALMIP
yalmip_time = clock;
% ************************************************
%% Check #inputs
% ************************************************
if nargin<5
candidateMonomials = [];
if nargin<4
params = [];
if nargin<3
options = sdpsettings;
if nargin<2
obj = [];
if nargin<1
help solvesos
return
end
end
end
end
end
if isempty(options)
options = sdpsettings;
end
% Lazy syntax (not official...)
if nargin==1 & isa(F,'sdpvar')
F = set(sos(F));
end
if ~isempty(options)
if options.sos.numblkdg
[sol,m,Q,residuals,everything] = solvesos_find_blocks(F,obj,options,params,candidateMonomials);
return
end
end
% *************************************************************************
%% Extract all SOS constraints and candidate monomials
% *************************************************************************
if ~any(is(F,'sos'))
error('At-least one constraint should be an SOS constraints!');
end
p = [];
ranks = [];
for i = 1:length(F)
if is(F(i),'sos')
pi = sdpvar(F(i));
p{end+1} = pi;
ranks(end+1) = getsosrank(pi); % Desired rank : Experimental code
end
end
if isempty(candidateMonomials)
for i = 1:length(F)
candidateMonomials{i}=[];
end
elseif isa(candidateMonomials,'sdpvar')
cM=candidateMonomials;
candidateMonomials={};
for i = 1:length(p)
candidateMonomials{i}=cM;
end
elseif isa(candidateMonomials,'cell')
if length(p)~=length(candidateMonomials)
error('Dimension mismatch between the candidate monomials and the number of SOS constraints');
end
end
% *************************************************************************
%% Get the parametric constraints
% *************************************************************************
F_original = F;
F_parametric = F(find(~is(F,'sos')));
if isempty(F_parametric)
F_parametric = set([]);
end
% *************************************************************************
%% Expand the parametric constraints
% *************************************************************************
if ~isempty(yalmip('extvariables'))
[F_parametric,failure] = expandmodel(F_parametric,obj,options);
F_parametric = expanded(F_parametric,1);
obj = expanded(obj,1);
if failure
Q{1} = [];m{1} = [];residuals = [];everything = [];
sol.yalmiptime = etime(clock,yalmip_time);
sol.solvertime = 0;
sol.info = yalmiperror(14,'YALMIP');
sol.problem = 14;
end
end
if ~isempty(params)
if ~isa(params,'sdpvar')
error('Fourth argment should be a SDPVAR variable or empty')
end
end
% *************************************************************************
% Collect all possible parametric variables
% *************************************************************************
ParametricVariables = uniquestripped([depends(obj) depends(F_parametric) depends(params)]);
if options.verbose>0;
disp('-------------------------------------------------------------------------');
disp('YALMIP SOS module started...');
disp('-------------------------------------------------------------------------');
end
% *************************************************************************
%% INITIALIZE SOS-DECOMPOSITIONS SDP CONSTRAINTS
% *************************************************************************
F_sos = set([]);
% *************************************************************************
%% FIGURE OUT ALL USED PARAMETRIC VARIABLES
% *************************************************************************
AllVariables = uniquestripped([depends(obj) depends(F_original) depends(F_parametric)]);
ParametricVariables = intersect(ParametricVariables,AllVariables);
MonomVariables = setdiff(AllVariables,ParametricVariables);
params = recover(ParametricVariables);
if isempty(MonomVariables)
error('No independent variables? Perhaps you added a constraint set(p(x)) when you meant set(sos(p(x)))');
end
if options.verbose>0;disp(['Detected ' num2str(length(ParametricVariables)) ' parametric variables and ' num2str(length(MonomVariables)) ' independent variables.']);end
% ************************************************
%% ANY BMI STUFF
% ************************************************
NonLinearParameterization = 0;
if ~isempty(ParametricVariables)
monomtable = yalmip('monomtable');
ParametricMonomials = monomtable(uniquestripped([getvariables(obj) getvariables(F_original)]),ParametricVariables);
if any(sum(abs(ParametricMonomials),2)>1)
NonLinearParameterization = 1;
end
end
% ************************************************
%% ANY INTEGER DATA
% ************************************************
IntegerData = 0;
if ~isempty(ParametricVariables)
globalInteger = [yalmip('binvariables') yalmip('intvariables')];
integerVariables = getvariables(F_parametric(find(is(F_parametric,'binary') | is(F_parametric,'integer'))));
integerVariables = [integerVariables intersect(ParametricVariables,globalInteger)];
integerVariables = intersect(integerVariables,ParametricVariables);
IntegerData = ~isempty(integerVariables);
end
% ************************************************
%% ANY UNCERTAIN DATA
% ************************************************
UncertainData = 0;
if ~isempty(ParametricVariables)
UncertainData = any(is(F_parametric,'uncertain'));
end
% ************************************************
%% DISPLAY WHAT WE FOUND
% ************************************************
if options.verbose>0 & ~isempty(F_parametric)
nLP = 0;
nEQ = 0;
nLMI = sum(full(is(F_parametric,'lmi')) & full(~is(F_parametric,'element-wise'))); %FULL due to bug in ML 7.0.1
for i = 1:length(F_parametric)
if is(F_parametric,'element-wise')
nLP = nLP + prod(size(F_parametric(i)));
end
if is(F_parametric,'equality')
nEQ = nEQ + prod(size(F_parametric(i)));
end
end
disp(['Detected ' num2str(full(nLP)) ' linear inequalities, ' num2str(full(nEQ)) ' equality constraints and ' num2str(full(nLMI)) ' LMIs.']);
end
% ************************************************
%% IMAGE OR KERNEL REPRESENTATION?
% ************************************************
noRANK = all(isinf(ranks));
switch options.sos.model
case 0
constraint_classes = constraintclass(F);
noCOMPLICATING = ~any(ismember([7 8 9 10 12 13 14 15],constraint_classes));
if noCOMPLICATING & ~NonLinearParameterization & noRANK & ~IntegerData
options.sos.model = 1;
if options.verbose>0;disp('Using kernel representation (options.sos.model=1).');end
else
if NonLinearParameterization
if options.verbose>0;disp('Using image representation (options.sos.model=2). Nonlinear parameterization found');end
elseif ~noRANK
if options.verbose>0;disp('Using image representation (options.sos.model=2). SOS-rank constraint was found.');end
elseif IntegerData
if options.verbose>0;disp('Using image representation (options.sos.model=2). Integrality constraint was found.');end
elseif UncertainData
if options.verbose>0;disp('Using image representation (options.sos.model=2). Uncertain data was found.');end
else
if options.verbose>0;disp('Using image representation (options.sos.model=2). Integer data, KYPs or similar was found.');end
end
options.sos.model = 2;
end
case 1
if NonLinearParameterization
if options.verbose>0;disp('Switching to image model due to nonlinear parameterization (not supported in kernel model).');end
options.sos.model = 2;
end
if ~noRANK
if options.verbose>0;disp('Switching to image model due to SOS-rank constraints (not supported in kernel model).');end
options.sos.model = 2;
end
if IntegerData
if options.verbose>0;disp('Switching to image model due to integrality constraints (not supported in kernel model).');end
options.sos.model = 2;
end
case 3
otherwise
end
if ~isempty(yalmip('extvariables')) & options.sos.model == 2 & nargin<4
disp(' ')
disp('**Using nonlinear operators in SOS problems can cause problems.')
disp('**Please specify all parametric variables using the fourth argument');
disp(' ');
end
% ************************************************
%% SKIP DIAGONAL INCONSISTENCY FOR PARAMETRIC MODEL
% ************************************************
if ~isempty(params) & options.sos.inconsistent
if options.verbose>0;disp('Turning off inconsistency based reduction (not supported in parametric models).');end
options.sos.inconsistent = 0;
end
% ************************************************
%% INITIALIZE OBJECTIVE
% ************************************************
if ~isempty(obj)
options.sos.traceobj = 0;
end
parobj = obj;
obj = [];
% ************************************************
%% SCALE SOS CONSTRAINTS
% ************************************************
if options.sos.scale
for constraint = 1:length(p)
normp(constraint) = sqrt(norm(full(getbase(p{constraint}))));
p{constraint} = p{constraint}/normp(constraint);
sizep(constraint) = size(p{constraint},1);
end
else
normp = ones(length(p),1);
end
% ************************************************
%% Some stuff not supported for
% matrix valued SOS yet, turn off for safety
% ************************************************
for constraint = 1:length(p)
sizep(constraint) = size(p{constraint},1);
end
if any(sizep>1)
options.sos.postprocess = 0;
options.sos.reuse = 0;
end
% ************************************************
%% SKIP CONGRUENCE REDUCTION WHEN SOS-RANK
% ************************************************
if ~all(isinf(ranks))
options.sos.congruence = 0;
end
% ************************************************
%% Create an LP model to speed up things in Newton
% polytope reduction
% ************************************************
if options.sos.newton
temp=sdpvar(1,1);
tempops = options;
tempops.solver = 'cdd,glpk,*'; % CDD is generally robust on these problems
tempops.verbose = 0;
tempops.saveduals = 0;
[aux1,aux2,aux3,LPmodel] = export(set(temp>0),temp,tempops);
else
LPmodel = [];
end
% ************************************************
%% LOOP THROUGH ALL SOS CONSTRAINTS
% ************************************************
for constraint = 1:length(p)
% *********************************************
%% FIND THE VARIABLES IN p, SORT, UNIQUE ETC
% *********************************************
if options.verbose>1;disp(['Creating SOS-description ' num2str(constraint) '/' num2str(length(p)) ]);end
pVariables = depends(p{constraint});
AllVariables = uniquestripped([pVariables ParametricVariables]);
MonomVariables = setdiff1D(pVariables,ParametricVariables);
x = recover(MonomVariables);
z = recover(AllVariables);
MonomIndicies = find(ismember(AllVariables,MonomVariables));
ParametricIndicies = find(ismember(AllVariables,ParametricVariables));
if isempty(MonomIndicies)
% This is the case set(sos(t)) where t is a parametric (matrix) variable
% This used to create an error message befgore to avoid some silly
% bug in the model generation. Creating this error message is
% stupid, but at the same time I can not remember where the bug was
% and I have no regression test for this case. To avoid
% introducing same bug again by mistake, I create all data
% specifically for this case
previous_exponent_p_monoms = [];%exponent_p_monoms;
n = length(p{constraint});
A_basis = getbase(sdpvar(n,n,'full'));d = find(triu(ones(n)));A_basis = A_basis(d,2:end);
BlockedA{constraint} = {A_basis};
Blockedb{constraint} = p{constraint}(d);
BlockedN{constraint} = {zeros(1,0)};
Blockedx{constraint} = x;
Blockedvarchange{constraint}=zeros(1,0);
continue
% error('You have constraints of the type set(sos(f(parametric_variables))). Please use set(f(parametric_variables) > 0) instead')
end
% *********************************************
%% Express p in monimials and coefficients
% *********************************************
[exponent_p,p_base] = getexponentbase(p{constraint},z);
% *********************************************
%% Powers for user defined candidate monomials
% (still experimental)
% *********************************************
if ~all(cellfun('isempty',candidateMonomials))
exponent_c = [];
if isa(candidateMonomials{constraint},'cell')
for i = 1:length(candidateMonomials{constraint})
exponent_c{i} = getexponentbase(candidateMonomials{constraint}{i},z);
exponent_c{i} = exponent_c{i}(:,MonomIndicies);
end
else
exponent_c{1} = getexponentbase(candidateMonomials{constraint},z);
exponent_c{1} = exponent_c{1}(:,MonomIndicies);
end
else
exponent_c = [];
end
% *********************************************
%% STUPID PROBLEM WITH ODD HIGHEST POWER?...
% *********************************************
if isempty(ParametricIndicies)
max_degrees = max(exponent_p(:,MonomIndicies),[],1);
bad_max = any(max_degrees-fix((max_degrees/2))*2);
if bad_max
for i = 1:length(p)
Q{i}=[];
m{i}=[];
end
residuals=[];
everything = [];
sol.yalmiptime = etime(clock,yalmip_time);
sol.solvertime = 0;
sol.info = yalmiperror(1,'YALMIP');
sol.problem = 2;
return
end
end
% *********************************************
%% Can we make a smart variable change (no code)
% *********************************************
exponent_p_monoms = exponent_p(:,MonomIndicies);
varchange = ones(1,size(MonomIndicies,2));
% *********************************************
%% Unique monoms (copies due to parametric terms)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -