📄 robustify.m
字号:
function [F,h,failure] = robustify(F,h,ops,w)
%ROBUSTIFY Derives robust counterpart.
%
% [Frobust,objrobust,failure] = ROBUSTIFY(F,h,options) is used to derive
% the robust counterpart of an uncertain YALMIP model.
%
% min h(x,w)
% subject to
% F(x,w) >(=) 0 for all w in W
%
% The constraints and objective have to satisfy a number of conditions for
% the robustification to be tractable. Please refer to the YALMIP Wiki for
% the current assumptions (this is constantly evolving)
%
% Some options for the robustification strategies can be altered via the
% solver tag 'robust' in sdpsettings
% 'robust.lplp' : Controls how linear constraints with affine
% parameterization in an uncertainty with polytopic
% description is handled. Can be either 'duality' or
% 'enumeration'
%
% See also SOLVEROBUST, UNCERTAIN
% Author Johan L鰂berg
% $Id: robustify.m,v 1.25 2007/02/23 14:45:44 joloef Exp $
if nargin < 3
ops = [];
end
if nargin < 4
w = [];
end
if isempty(w)
unc_declarations = is(F,'uncertain');
if any(unc_declarations)
w = recover(getvariables(sdpvar(F(find(unc_declarations)))));
F = F(find(~unc_declarations));
else
error('There is no uncertainty definition in the model.')
end
end
if isempty(ops)
ops = sdpsettings;
end
% Figure out which variables are uncertain, certain, and lifted variables
% in the uncertainty description (this code is buggy as ....)
[x,w,x_variables,w_variables,aux_variables,F,failure] = robust_classify_variables(F,h,ops,w);
if failure
return
end
% Integer variables are OK in x, but not in the uncertainty (robustification
% is based on strong duality in w-space)
integervars = [yalmip('binvariables') yalmip('intvariables')];
ind = find(is(F,'integer') | is(F,'binary'));
if ~isempty(ind)
integervars = [integervars getvariables(F(ind))];
if any(ismember(w_variables,integervars))
failure = 1;
return
end
end
% Find uncertainty description, uncertain and certain constraints
F_w = set([]);
F_x = set([]);
F_xw = set([]);
for i = 1:length(F)
if all(ismember(depends(F(i)),w_variables))
% Uncertainty definition
F_w = F_w + F(i);
elseif all(ismember(depends(F(i)),x_variables))
% Certain constraint
F_x = F_x + F(i);
else
% Uncertain constraint
F_xw = F_xw + F(i);
end
end
% Limitation in the modelling language...
if ~isempty(intersect(intersect(depends(F_xw),depends(F_w)),aux_variables))
disp('You are most likely using a nonlinear operator to describe the');
disp('uncertainty set (such as norm(w,1) <=1). This is currently not');
disp('supported. Please model the constraint manually.');
error('Uncertain model does not satisfy assumptions (nonlinear operator on uncertainty in uncertain constraint)');
end
if length(F_w)==0
error('There is no uncertainty description in the model.');
end
% Some pre-calc
xw = [x;w];
xind = find(ismembc(getvariables(xw),getvariables(x)));
wind = find(ismembc(getvariables(xw),getvariables(w)));
% Analyze the objective and try to rewrite any uncertainty into the format
% assumed by YALMIP (
if ~isempty(h)
%
%[Q,c,f] = quadratic_model(h,xw);
if 0
[Q,c,f,dummy,nonquadratic] = quaddecomp(h,xw);
else
[Q,c,f,dummy,nonquadratic] = vecquaddecomp(h,xw);
Q = Q{1};
c = c{1};
f = f{1};
end
if nonquadratic
error('Objective can be at most quadratic, with the linear term uncertain');
end
Q_ww = Q(wind,wind);
Q_xw = Q(xind,wind);
Q_xx = Q(xind,xind);
c_x = c(xind);
c_w = c(wind);
if nnz(Q_ww) > 0
error('Objective can be at most quadratic, with the linear term uncertain');
end
% Separate certain and uncertain terms, place uncertain terms in the
% constraints instead
if is(h,'linear')
if isempty(intersect(getvariables(w),getvariables(h)))
h_fixed = h;
else
sdpvar t
F_xw = F_xw + set(h < t);
h_fixed = t;
x = [x;t];
end
else
h_fixed = x'*Q_xx*x + c_x'*x + f;
h_uncertain = 2*w'*Q_xw'*x + c_w'*w;
if ~isa(h_uncertain,'double')
sdpvar t
F_xw = F_xw + set(h_uncertain < t);
h_fixed = h_fixed + t;
x = [x;t];
end
end
else
h_fixed = [];
end
% Convert quadratic constraints in uncertainty model to SOCPs.
F_w = convertquadratics(F_w);
% Export uncertainty model to numerical format
ops.solver = '';
[aux1,aux2,aux3,Zmodel] = export(F_w,[],ops,[],[],1);
if ~isempty(Zmodel)
if length(Zmodel.c) ~= length(w)
error('Some uncertain variables are unconstrained.')
end
else
error('Failed when exporting a model of the uncertainty.')
end
% OK, we are done with the initial analysis of the involved variables, and
% check of the objective function.
%
% At this point, we apply algorithms to robustify constraints (currently we
% only have code for the uncertain conic LP case and polytopic LP/SOCP/SDP)
F_robust = set([]);
% Check if the uncertainty model is a box model %with additive uncertainty.
% If that is the case, we explicitly maximize LP constraints, and this is
% currently done in code where duality based robustification is done
[aux,lower,upper] = find_simple_variable_bounds(Zmodel);
box_model = all(~isinf(lower)) & all(~isinf(upper));% & all(is(F_xw,'linear'));
% Pick out the uncertain linear equalities and robustify using duality
conic = ~isequal(Zmodel.K.s,0) | ~isequal(Zmodel.K.q,0);
if conic | isequal(ops.robust.lplp,'duality') | box_model
F_lp = F_xw(find(is(F_xw,'elementwise')));
F_xw = F_xw - F_lp;
F_robust = F_robust + robustify_lp_conic(F_lp,Zmodel,x,w);
end
% Pick out uncertain LP/SOCP/SDP constraints and robustify by enumeration
F_conic = F_xw(find(is(F_xw,'sdp') | is(F_xw,'socc') | is(F_xw,'elementwise')));
F_xw = F_xw - F_conic;
F_robust = F_robust + robustify_sdp_conic(F_conic,Zmodel,x,w);
% Pick out the uncertain equalities and robustify
F_eq = F_xw(find(is(F_xw,'equality')));
F_xw = F_xw - F_eq;
F_robust = F_robust + robustify_eq_conic(F_eq,Zmodel,x,w);
if length(F_xw) > 0
error('There are some uncertain constraints that not are supported by YALMIP')
end
% Return the robustfied model
F = F_robust+F_x;
h = h_fixed;
% The model has been expanded, so we have to remember this (trying to
% expand an expanded model leads to nonconvexity error)
F = expanded(F,1); % This is actually done already in expandmodel
h = expanded(h,1); % But this one has to be done manually
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -