📄 tfrstft.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{tfrstft}
\hspace*{-1.6cm}{\Large \bf tfrstft}
\vspace*{-.4cm}
\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}
\vspace*{.2cm}
{\bf \large \fontfamily{cmss}\selectfont Purpose}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Short time Fourier transform.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
[tfr,t,f] = tfrstft(x)
[tfr,t,f] = tfrstft(x,t)
[tfr,t,f] = tfrstft(x,t,N)
[tfr,t,f] = tfrstft(x,t,N,h)
[tfr,t,f] = tfrstft(x,t,N,h,trace)
\end{verbatim}
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Description}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
{\ty tfrstft} computes the short-time Fourier transform of a
discrete-time signal {\ty x}. Its continuous expression writes
\[F_x(t,\nu;h) = \int_{-\infty}^{+\infty} x(u)\ h^*(u-t)\ e^{-j2\pi
\nu u}\ du\] where $h(t)$ is a {\it short time analysis window} localized
around $t=0$ and $\nu=0$.\\
\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8cm} c}
Name & Description & Default value\\
\hline
{\ty x} & signal ({\ty Nx=length(x)}) \\
{\ty t} & time instant(s) & {\ty (1:Nx)}\\
{\ty N} & number of frequency bins & {\ty Nx}\\
{\ty h} & smoothing window, {\ty h} being normalized so as to
be of unit energy. & {\ty window(odd(N/4))}\\
{\ty trace} & if nonzero, the progression of the algorithm is shown
& {\ty 0}\\
\hline {\ty tfr} & time-frequency decomposition (complex values). The
frequency axis is graduated from {\ty -0.5} to {\ty 0.5}\\
{\ty f} & vector of normalized frequencies\\
\hline
\end{tabular*}
\vspace*{.2cm}
When called without output arguments, {\ty tfrstft} runs {\ty tfrqview},
which displays the squared modulus of the short-time Fourier transform.
\end{minipage}
\newpage
{\bf \large \fontfamily{cmss}\selectfont Example}
\begin{verbatim}
sig=[fmlin(128,0.05,.45);fmlin(128,0.35,.15)];
tfr=tfrstft(sig);
subplot(211); imagesc(abs(tfr(1:128,:))); axis('xy')
subplot(212); imagesc(angle(tfr(1:128,:))); axis('xy')
\end{verbatim}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont See Also}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
all the {\ty tfr*} functions.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont References}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
[1] J. Allen, L. Rabiner ``A Unified Approach to Short-Time Fourier
Analysis and Synthesis'' Proc. of the IEEE, Vol. 65, No. 11, pp. 1558-64,
Nov. 1977.\\
[2] S. Nawab, T. Quatieri ``Short-Time Fourier Transform'', chapter in {\it
Advanced Topics in Signal Processing} J. Lim and A. Oppenheim
eds. Prentice Hall, Englewood Cliffs, NJ, 1988.
\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -