⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sudatumk2dr.c

📁 su 的源代码库
💻 C
📖 第 1 页 / 共 3 页
字号:
        free2float(ssx);        free2float(ssz);        free1float(sss);}/* residual traveltime calculation based  on reference   time	*/  void resit(int nx,float fx,float dx,int nz,int nr,float dr,		float **tb,float **t,float x0){	int ix,iz,jr;	float xi,ar,sr,sr0;	for(ix=0; ix<nx; ++ix){		xi = fx+ix*dx-x0;		ar = abs(xi)/dr;		jr = (int)ar;		sr = ar-jr;		sr0 = 1.0-sr;		if(jr>nr-2) jr = nr-2;		for(iz=0; iz<nz; ++iz)			t[ix][iz] -= sr0*tb[jr][iz]+sr*tb[jr+1][iz];	}} /* lateral interpolation	*//* sum of two tables	*/  void sum2(int nx,int nz,float a1,float a2,float **t1,float **t2,float **t){	int ix,iz;	for(ix=0; ix<nx; ++ix) 		for(iz=0; iz<nz; ++iz)			t[ix][iz] = a1*t1[ix][iz]+a2*t2[ix][iz];} /* compute  reference traveltime and slowness	*/      void timeb(int nr,int nz,float dr,float dz,float fz,float z0,float a,	float v0,float **t,float **p,float **sig,float **ang){	int  ir,iz;	float r,z,v,rc,oa,temp,rou,zc;	if( a==0.0) {		for(ir=0,r=0;ir<nr;++ir,r+=dr)			for(iz=0,z=fz-z0;iz<nz;++iz,z+=dz){				rou = sqrt(r*r+z*z);				if(rou<dz) rou = dz;				t[ir][iz] = rou/v0;				p[ir][iz] = r/(rou*v0);				sig[ir][iz] = v0*rou;				ang[ir][iz] = asin(r/rou);			}	} else {		oa = 1.0/a; 	zc = v0*oa;		for(ir=0,r=0;ir<nr;++ir,r+=dr)			for(iz=0,z=fz+zc-z0;iz<nz;++iz,z+=dz){				rou = sqrt(r*r+z*z);				v = v0+a*(z-zc+z0);				if(ir==0){ 					t[ir][iz] = log(v/v0)*oa;					p[ir][iz] = 0.0;					ang[ir][iz] = 0.0;					sig[ir][iz] = 0.5*(z+0.1*dz-zc+z0)						*(v0+v);				} else {					rc = (r*r+z*z-zc*zc)/(2.0*r);					rou = sqrt(zc*zc+rc*rc);					t[ir][iz] = log((v*(rou+rc))						/(v0*(rou+rc-r)))*oa;					p[ir][iz] = sqrt(rou*rou-rc*rc)						/(rou*v0);                                        temp = v0*p[ir][iz];                                        if(temp>1.0) temp = 1.0;                                        ang[ir][iz] = asin(temp);					sig[ir][iz] = a*rou*r;				}			}	}}void filt(float *trace,int nt,float dt,float fmax,int m,float *trf,	     int sgn);  void dat2d(float *trace,int nt,float ft,float dt,float sx,float gx,	     float **dat,float aperx,int nx,float fx,float dx,  	     float nz,float fz,float dz,int mtmax,float xm,	     float fmax,int nxi,float fxi,float dxi,float angmax,	     float **tb,float **pb,float **angb,int nr,float **tsum,             int nzt,float fzt,float dzt,int nxt,float fxt,float dxt,             int antiali,int sgn,float **szif,float nangl,             float **sigb,int verbose)/*****************************************************************************Datum one trace ******************************************************************************Input:*trace		one seismic trace nt		number of time samples in seismic traceft		first time sample of seismic tracedt		time sampleing interval in seismic tracesx,gx		lateral coordinates of source and geophone (ignored)aperx		lateral aperture in the datuming processnx,fx,dx,nz,fz,dz	dimension parameters of datuming regionmtmax		number of time samples in triangle filterxm		datuming point ( source=sx or receiver=gx )fmax		frequency-highcut for input trace	 fxi             x-coordinate of the first surface locationdxi             horizontal spacingon surfacenxi             number of input surface locationsangmax		migration angle aperature from vertical 	 (tb,pb,angb)	reference traveltime, lateral slowness, sigb		emergent angle and sigmanr		number of lateral samples in reference quantitiestsum		sum of residual traveltimes from shot and receivernxt,fxt,dxt,nzt,fzt,dzt		dimension parameters of traveltime tableantiali         Anti-aliase filter flagsgn             Sign of the datuming process(up or down ward)szif            array[] of the z component of the reference surfacesnangl		Angles that the normal unit vector of the                current surface form with the vertical at source or geophone                locationOutput:dat		Redatumed section*****************************************************************************/{        int nxf,nxe,nxtf,nxte,it,ix,iz,iz0,izt0,nzp,jr,jz,jt,mt,jx,mr;        float x,dis,rxz,ar,sr,sr0,z0,rdz,ampd,res0,am,am0,fxf,	      ang,ax,ax0,pmin,odt=1.0/dt,pd,az,sz,sz0,              at,td,res,temp,sig,sigma;	float **tmt,**ampt,**ampti,*tm,*amp,*ampi,*tzt,*trf,*zpt;	tmt = alloc2float(nzt,nxt);	ampt = alloc2float(nzt,nxt);	ampti = alloc2float(nzt,nxt);	tm = alloc1float(nzt);	tzt = alloc1float(nzt);	amp = alloc1float(nzt);	ampi = alloc1float(nzt);	zpt = alloc1float(nxt);	trf = alloc1float(nt+2*mtmax);	z0 = (fz-fzt)/dzt + 0.0*sx + 0.0*gx;	rdz = dz/dzt;	pmin = 1.0/(2.0*dx*fmax);	fxf = fxi + (nxi-2)*dxi;		filt(trace,nt,dt,fmax,mtmax,trf,sgn);	rxz = (angmax==90)?0.0:1.0/tan(angmax*PI/180.);	nxtf = (xm-aperx-fxt)/dxt;	if(nxtf<0) nxtf = 0;	nxte = (xm+aperx-fxt)/dxt+1;	if(nxte>=nxt) nxte = nxt-1;	/* compute amplitudes and filter length	*/	for(ix=nxtf; ix<=nxte; ++ix){		x = fxt+ix*dxt;		dis = (xm>=x)?xm-x:x-xm;		izt0 = ((dis-dxt)*rxz-fzt)/dzt-1;		if(izt0<0) izt0 = 0;		if(izt0>=nzt) izt0 = nzt-1;		ar = (xm>=x)?(xm-x)/dx:(x-xm)/dx;		jr = (int)ar;		if(jr>nr-2) jr = nr-2;		sr = ar-jr;		sr0 = 1.0-sr;                sig = ((xm-x)<0)?1.0:-1.0;		zpt[ix] = fzt+(nzt-1)*dzt;		for(iz=izt0; iz<nzt; ++iz){			sigma = sr0*sigb[jr][iz]+sr*sigb[jr+1][iz];			ang = sr0*angb[jr][iz]+sr*angb[jr+1][iz];                        ang = (sig*ang - nangl);			ampd = cos(ang)/(cos(nangl)*sqrt(sigma));	/* Filter of 90 degrees to the operator (Peels,1988)           Peels, G. L., 1988, True amplitude wave field extrapolation           with applications in  seismic shot record redatuming, PhD           thesis, Delft University of Technology.              */			if(ABS(ang)>=(PI/2)) {				ampd=0.0;			}			if(ampd<0.0) ampd = -ampd;			ampt[ix][iz] = ampd;			pd = sr0*pb[jr][iz]+sr*pb[jr+1][iz];			if(pd<0.0) pd = -pd;			temp = pd*dx*odt;			if(temp<1) temp = 1.0;			if(temp>mtmax) temp = mtmax;			ampti[ix][iz] = ampd/(temp*temp);			tmt[ix][iz] = temp;			if(pd<pmin && zpt[ix]>fzt+(nzt-1.1)*dzt) 				zpt[ix] = fzt+iz*dzt;		}	}	nxf = (xm-aperx-fx)/dx+0.5;	if(nxf<0) nxf = 0;	if((xm+aperx)>=fxf)		nxe = (fxf-fx)/dx + 0.5;	else		nxe = (xm+aperx-fx)/dx + 0.5;	if(nxe>=nx) nxe = nx-1;	am = (fx-fxi)/dxi;	mr = (int)am;	am = am - mr;	if(am<=0.01) am = 0.;	if(am>=0.99) am = 1.0;	am0 = 1.0-am;	if(mr<0) mr = 0;	if(mr+nxe>=nxi-1) 		err("Topography definition is out of range!\n");		/* interpolate amplitudes and filter length along lateral	*/	for(ix=nxf; ix<=nxe; ++ix){		x = fx+ix*dx;		dis = (xm>=x)?xm-x:x-xm;		izt0 = (dis*rxz-fzt)/dzt;		if(izt0<0) izt0 = 0;		if(izt0>=nzt) izt0 = nzt-1;		iz0 = (dis*rxz-fz)/dz;		if(iz0<0) iz0 = 0;		if(iz0>=nz) iz0 = nz-1;		ax = (x-fxt)/dxt;		jx = (int)ax;		ax = ax-jx;		if(ax<=0.01) ax = 0.;		if(ax>=0.99) ax = 1.0;		ax0 = 1.0-ax;		if(jx>nxte-1) jx = nxte-1;		if(jx<nxtf) jx = nxtf;		ar = (xm>=x)?(xm-x)/dx:(x-xm)/dx;		jr = (int)ar;		if(jr>nr-2) jr = nr-2;		sr = ar-jr;		sr0 = 1.0-sr;		for(iz=izt0; iz<nzt; ++iz){		    tzt[iz] = ax0*tsum[jx][iz]+ax*tsum[jx+1][iz]				+sr0*tb[jr][iz]+sr*tb[jr+1][iz];		    amp[iz] = ax0*ampt[jx][iz]+ax*ampt[jx+1][iz];		    ampi[iz] = ax0*ampti[jx][iz]+ax*ampti[jx+1][iz];		    tm[iz] = ax0*tmt[jx][iz]+ax*tmt[jx+1][iz];		}		nzp = (ax0*zpt[jx]+ax*zpt[jx+1]-fz)/dz+0.5;		if(nzp<iz0) nzp = iz0;                if(nzp>nz) nzp = nz;                iz = (ABS(am0*szif[ix+mr][1]+am*szif[ix+mr+1][1])-fz)/dz;                if(iz>=nz)                        err("Datuming surface is out of output range!\n");                az = z0+iz*rdz;                jz = (int)az;                if(jz>=nzt-1) jz = nzt-2;                sz = az-jz;                sz0 = 1.0-sz;                td = sz0*tzt[jz]+sz*tzt[jz+1];                at = (sgn*td-ft)*odt;                if ((iz<nzp) && (antiali)) {                /* interpolate along depth if operater aliasing   */                        at = at + mtmax;                        jt = (int)at;                        ampd = sz0*ampi[jz]+sz*ampi[jz+1];                        mt = (int)(0.5+sz0*tm[jz]+sz*tm[jz+1]);                        res = ABS(at-jt);                        res0 = 1.0-res;                        for (it=0; it<nt; it++){                          if(it+jt >= mtmax && jt < nt-it+mtmax-sgn){                             temp = (res0*(-trf[it+jt-mt]+2.0*trf[it+jt]                                 -trf[it+jt+mt])+res*(-trf[it+jt-mt+sgn]                                 +2.0*trf[it+jt+sgn]-trf[it+jt+mt+sgn]))*ampd;                             dat[ix][it] += temp;                          }                        }                }                /* interpolate along depth if not operater aliasing     */                else{                        jt = (int)at;                        ampd = sz0*amp[jz]+sz*amp[jz+1];                        res = ABS(at-jt);                        res0 = 1.0-res;                        for (it=0; it<nt; it++){                          if(it+jt >= 0 && jt < nt-it-sgn){                            temp=(res0*trace[it+jt]+res*trace[it+jt+sgn])*ampd;                            dat[ix][it] += temp;                          }                        }                }	}	free2float(ampt);	free2float(ampti);	free2float(tmt);	free1float(amp);	free1float(ampi);	free1float(zpt);	free1float(tm);	free1float(tzt);	free1float(trf);}void filt(float *trace,int nt,float dt,float fmax,int m,	  float *trf,int sgn)/*******************************************************************  Low-pass filter, integration and phase shift for input data	   input:     trace(nt)	single seismic trace    fmax	high cut frequency    sgn		Sign of the Datuming process  output:    trace(nt) 	filtered and phase-shifted seismic trace     tracei(nt) 	filtered, integrated and phase-shifted seismic trace ********************************************************************/{	static int nfft=0, itaper, nw, nwf;	static float *taper, *amp, *ampi, dw;	int  it,iw,itemp;	float temp, ftaper, const2, *rt;	complex *ct;	fmax *= 2.0*PI;	ftaper = 0.1*fmax;	const2 = 0.5*sqrt(2.0);	if(nfft==0) {        	/* Set up FFT parameters */        	nfft = npfaro(2*(nt+2*m), 4*(nt+2*m));        	if (nfft >= SU_NFLTS || nfft >= 720720)                	err("Padded nt=%d -- too big", nfft);        	nw = nfft/2 + 1;		dw = 2.0*PI/(nfft*dt);		itaper = 0.5+ftaper/dw;		taper = ealloc1float(2*itaper+1);		for(iw=-itaper; iw<=itaper; ++iw){			temp = (float)iw/(1.0+itaper); 			taper[iw+itaper] = (1-temp)*(1-temp)*(temp+2)/4;		}		nwf = 0.5+fmax/dw;		if(nwf>nw-itaper-1) nwf = nw-itaper-1;		amp = ealloc1float(nwf+itaper+1);		ampi = ealloc1float(nwf+itaper+1);		amp[0] = ampi[0] = 0.;		for(iw=1; iw<=nwf+itaper; ++iw){			amp[iw] = sqrt(dw*iw)/nfft;			ampi[iw] = 0.5/(1-cos(iw*dw*dt));		}	}        /* Allocate fft arrays */        rt   = ealloc1float(nfft);        ct   = ealloc1complex(nw);        memcpy(rt, trace, nt*FSIZE);        memset((void *) (rt + nt), 0, (nfft-nt)*FSIZE);         pfarc(1, nfft, rt, ct);	for(iw=nwf-itaper;iw<=nwf+itaper;++iw){		itemp = iw-(nwf-itaper);		ct[iw].r = taper[itemp]*ct[iw].r; 		ct[iw].i = taper[itemp]*ct[iw].i; 	}	for(iw=nwf+itaper+1;iw<nw;++iw){		ct[iw].r = 0.; 		ct[iw].i = 0.; 	}	for(iw=0; iw<=nwf+itaper; ++iw){		/* phase shifts PI/4 - Half derivative	*/		temp = (ct[iw].r-sgn*ct[iw].i)*amp[iw]*const2;		ct[iw].i = (sgn*ct[iw].r + ct[iw].i)*amp[iw]*const2;		ct[iw].r = temp;	}                      pfacr(-1, nfft, ct, rt);		        /* Load traces back in */	for (it=0; it<nt; ++it) trace[it] = rt[it];        /* Integrate traces   */	for(iw=0; iw<=nwf+itaper; ++iw){		ct[iw].i = ct[iw].i*ampi[iw];		ct[iw].r = ct[iw].r*ampi[iw];	}        pfacr(-1, nfft, ct, rt);        for (it=0; it<m; ++it)  trf[it] = rt[nfft-m+it];        for (it=0; it<nt+m; ++it)  trf[it+m] = rt[it];	free1float(rt);	free1complex(ct);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -