📄 frechet.c
字号:
/* Copyright (c) Colorado School of Mines, 2006.*//* All rights reserved. *//* *//* Function RmFrechet() *//* *//* Computing reflectivity matrices for a given model at a *//* specific slowness and temporal frequency and its *//* correspondent Frechet derivatives *//* *//* Input parameters: *//* alpha..................p-wave velocities of the model *//* global variable *//* beta...................s-wave velocities of the model *//* global variable *//* rho....................densities of the elastic model *//* global variable *//* thick..................thicknesses of the model */ /* global variable *//* wC.....................complex frequency *//* global variable *//* uC.....................complex slowness *//* global variable *//* *//* Output parameters: *//* rm.....................the reflectivity matrix *//* DmB....................Frechet derivatives of the *//* reflectivity matrix *//* note the DmB data structure: *//* DmB[# of Layers][derivatives from the layer (or lim[0]) *//* to the layer (or lim[1])][4 elements] *//* *//* Wences Gouveia *//* September 1995 */#include "posteriori.h"void RmFrechet(){ /* declaration of variables */ int i, iL, iDer; /* counter */ complex aux1; /* auxiliar quantities */ complex am, amI, bm, bmI; /* vertical slownesses for P and S waves */ /* amI = am * I, bmI = bm * I */ complex wThick; /* wC * thickness */ complex E[2][2]; /* phase-shift matrix */ complex mT[2][2]; /* reflectivity matrix at top of layer */ complex mTtD[2][2]; /* mt * tD */ complex tUinv[2][2]; /* tU * inv */ complex mB[2][2]; /* reflectivity matrix at bottom of layer */ complex rD[2][2], tD[2][2]; /* reflec. and transm. coefficients for */ /* downgoing waves */ complex rU[2][2], tU[2][2]; /* reflec. and transm. coefficients for */ /* upgoing waves */ complex mAux[2][2]; /* auxiliar matrix */ complex inv[2][2]; /* inv = (I - mT * rU)^-1 */ /* initializing the reflectivity matrix at the bottom of half space */ mT[0][0] = zeroC; mT[0][1] = zeroC; mT[1][0] = zeroC; mT[1][1] = zeroC; /* initializing the reflectivity matrix at the bottom */ /* of layer nL - 1 */ RTd(nL - 1, nL); mB[0][0] = coeffD[0]; mB[0][1] = coeffD[1]; mB[1][0] = coeffD[2]; mB[1][1] = coeffD[3]; /* checking depth limits */ for (iDer = 0; iDer < numberPar; iDer++) { /* Vp -> Vs -> rho, if all active */ if (lim[0] <= nL - 1 && nL - 1 < lim[1]) { /* Indexes: */ /* [ 0 1 ] */ /* [ 2 3 ] */ frechetRTd(nL - 1, nL, nL - 1); DmB[nL - 1][limRange * iDer + 0][0] = coeffDFr[iDer][0]; DmB[nL - 1][limRange * iDer + 0][1] = coeffDFr[iDer][1]; DmB[nL - 1][limRange * iDer + 0][2] = coeffDFr[iDer][2]; DmB[nL - 1][limRange * iDer + 0][3] = coeffDFr[iDer][3]; } if (lim[0] <= nL && nL < lim[1]) { frechetRTd(nL - 1, nL, nL); DmB[nL - 1][limRange * iDer + 1][0] = coeffDFr[iDer][0]; DmB[nL - 1][limRange * iDer + 1][1] = coeffDFr[iDer][1]; DmB[nL - 1][limRange * iDer + 1][2] = coeffDFr[iDer][2]; DmB[nL - 1][limRange * iDer + 1][3] = coeffDFr[iDer][3]; } } /* main loop over the nL layers */ for (iL = nL - 1; iL >= 1; iL--) { /* square-root of PSlowness^2 - uuC */ auxm1 = PSlowness[iL][0].r - uuC.r; auxm2 = PSlowness[iL][0].i - uuC.i; auxm3 = sqrt(auxm1 * auxm1 + auxm2 * auxm2); auxm3 = sqrt(auxm3); angle = atan2(auxm2, auxm1) / 2; am.r = auxm3 * cos(angle); am.i = auxm3 * sin(angle); /* am * I */ amI.r = -am.i; amI.i = am.r; /* square-root of SSlowness^2 - uuC */ auxm1 = SSlowness[iL][0].r - uuC.r; auxm2 = SSlowness[iL][0].i - uuC.i; auxm3 = sqrt(auxm1 * auxm1 + auxm2 * auxm2); auxm3 = sqrt(auxm3); angle = atan2(auxm2, auxm1) / 2; bm.r = auxm3 * cos(angle); bm.i = auxm3 * sin(angle); /* bm * I */ bmI.r = -bm.i; bmI.i = bm.r; /* computing phase-shift matrix */ wThick.r = wC.r * (-2 * thick[iL]); wThick.i = wC.i * (-2 * thick[iL]); /* cexp (amI * wThick) */ auxm1 = amI.r * wThick.r - amI.i * wThick.i; auxm2 = amI.r * wThick.i + amI.i * wThick.r; E[0][0].r = exp(auxm1) * cos(auxm2); E[0][0].i = exp(auxm1) * sin(auxm2); /* cexp((amI + bmI) * (wThick * .5)) */ auxm1 = amI.r + bmI.r; auxm2 = amI.i + bmI.i; auxm3 = .5 * (auxm1 * wThick.r - auxm2 * wThick.i); auxm4 = .5 * (auxm1 * wThick.i + auxm2 * wThick.r); E[0][1].r = exp(auxm3) * cos(auxm4); E[0][1].i = exp(auxm3) * sin(auxm4); E[1][0] = E[0][1]; /* cexp (bmI * wThick) */ auxm1 = bmI.r * wThick.r - bmI.i * wThick.i; auxm2 = bmI.r * wThick.i + bmI.i * wThick.r; E[1][1].r = exp(auxm1) * cos(auxm2); E[1][1].i = exp(auxm1) * sin(auxm2); /* applying phase-shift */ mT[0][0].r = mB[0][0].r * E[0][0].r - mB[0][0].i * E[0][0].i; mT[0][0].i = mB[0][0].r * E[0][0].i + mB[0][0].i * E[0][0].r; mT[0][1].r = mB[0][1].r * E[0][1].r - mB[0][1].i * E[0][1].i; mT[0][1].i = mB[0][1].r * E[0][1].i + mB[0][1].i * E[0][1].r; mT[1][0].r = mB[1][0].r * E[1][0].r - mB[1][0].i * E[1][0].i; mT[1][0].i = mB[1][0].r * E[1][0].i + mB[1][0].i * E[1][0].r; mT[1][1].r = mB[1][1].r * E[1][1].r - mB[1][1].i * E[1][1].i; mT[1][1].i = mB[1][1].r * E[1][1].i + mB[1][1].i * E[1][1].r; /* bottom-layer matrix - need a sequence of Ref and TRANS coeff. */ RTd(iL - 1, iL); rD[0][0] = coeffD[0]; rD[0][1] = coeffD[1]; rD[1][0] = coeffD[2]; rD[1][1] = coeffD[3]; tD[0][0] = coeffD[4]; tD[0][1] = coeffD[5]; tD[1][0] = coeffD[6]; tD[1][1] = coeffD[7]; /* computing mT * tD */ mTtD[0][0].r = mT[0][0].r * tD[0][0].r - mT[0][0].i * tD[0][0].i + mT[0][1].r * tD[1][0].r - mT[0][1].i * tD[1][0].i; mTtD[0][0].i = mT[0][0].r * tD[0][0].i + mT[0][0].i * tD[0][0].r + mT[0][1].r * tD[1][0].i + mT[0][1].i * tD[1][0].r; mTtD[0][1].r = mT[0][0].r * tD[0][1].r - mT[0][0].i * tD[0][1].i + mT[0][1].r * tD[1][1].r - mT[0][1].i * tD[1][1].i; mTtD[0][1].i = mT[0][0].r * tD[0][1].i + mT[0][0].i * tD[0][1].r + mT[0][1].r * tD[1][1].i + mT[0][1].i * tD[1][1].r; mTtD[1][0].r = mT[1][0].r * tD[0][0].r - mT[1][0].i * tD[0][0].i + mT[1][1].r * tD[1][0].r - mT[1][1].i * tD[1][0].i; mTtD[1][0].i = mT[1][0].r * tD[0][0].i + mT[1][0].i * tD[0][0].r + mT[1][1].r * tD[1][0].i + mT[1][1].i * tD[1][0].r; mTtD[1][1].r = mT[1][0].r * tD[0][1].r - mT[1][0].i * tD[0][1].i + mT[1][1].r * tD[1][1].r - mT[1][1].i * tD[1][1].i; mTtD[1][1].i = mT[1][0].r * tD[0][1].i + mT[1][0].i * tD[0][1].r + mT[1][1].r * tD[1][1].i + mT[1][1].i * tD[1][1].r; RTu(iL - 1, iL); rU[0][0] = coeffU[0]; rU[0][1] = coeffU[1]; rU[1][0] = coeffU[2]; rU[1][1] = coeffU[3]; tU[0][0] = coeffU[4]; tU[0][1] = coeffU[5]; tU[1][0] = coeffU[6]; tU[1][1] = coeffU[7]; /* inv = (I - mT * rU)^-1 */ auxm1 = mT[0][0].r * rU[0][0].r - mT[0][0].i * rU[0][0].i; auxm2 = mT[0][0].r * rU[0][0].i + mT[0][0].i * rU[0][0].r; auxm3 = mT[0][1].r * rU[1][0].r - mT[0][1].i * rU[1][0].i; auxm4 = mT[0][1].r * rU[1][0].i + mT[0][1].i * rU[1][0].r; mAux[0][0].r = 1 - (auxm1 + auxm3); mAux[0][0].i = - (auxm2 + auxm4); auxm1 = mT[0][0].r * rU[0][1].r - mT[0][0].i * rU[0][1].i; auxm2 = mT[0][0].r * rU[0][1].i + mT[0][0].i * rU[0][1].r; auxm3 = mT[0][1].r * rU[1][1].r - mT[0][1].i * rU[1][1].i; auxm4 = mT[0][1].r * rU[1][1].i + mT[0][1].i * rU[1][1].r; mAux[0][1].r = - (auxm1 + auxm3); mAux[0][1].i = - (auxm2 + auxm4); auxm1 = mT[1][0].r * rU[0][0].r - mT[1][0].i * rU[0][0].i; auxm2 = mT[1][0].r * rU[0][0].i + mT[1][0].i * rU[0][0].r; auxm3 = mT[1][1].r * rU[1][0].r - mT[1][1].i * rU[1][0].i; auxm4 = mT[1][1].r * rU[1][0].i + mT[1][1].i * rU[1][0].r; mAux[1][0].r = - (auxm1 + auxm3); mAux[1][0].i = - (auxm2 + auxm4); auxm1 = mT[1][0].r * rU[0][1].r - mT[1][0].i * rU[0][1].i; auxm2 = mT[1][0].r * rU[0][1].i + mT[1][0].i * rU[0][1].r; auxm3 = mT[1][1].r * rU[1][1].r - mT[1][1].i * rU[1][1].i; auxm4 = mT[1][1].r * rU[1][1].i + mT[1][1].i * rU[1][1].r; mAux[1][1].r = 1 - (auxm1 + auxm3); mAux[1][1].i = - (auxm2 + auxm4); /* inverting */ auxm1 = mAux[0][0].r * mAux[1][1].r - mAux[0][0].i * mAux[1][1].i; auxm2 = mAux[0][0].r * mAux[1][1].i + mAux[0][0].i * mAux[1][1].r; auxm3 = mAux[0][1].r * mAux[1][0].r - mAux[0][1].i * mAux[1][0].i; auxm4 = mAux[0][1].r * mAux[1][0].i + mAux[0][1].i * mAux[1][0].r; aux1.r = auxm1 - auxm3; aux1.i = auxm2 - auxm4; /* 1 / aux1 */ aux = aux1.r * aux1.r + aux1.i * aux1.i; aux1.r = aux1.r / aux; aux1.i = -aux1.i / aux; inv[0][0].r = mAux[1][1].r * aux1.r - mAux[1][1].i * aux1.i; inv[0][0].i = mAux[1][1].r * aux1.i + mAux[1][1].i * aux1.r; inv[0][1].r = -1 * (mAux[0][1].r * aux1.r - mAux[0][1].i * aux1.i); inv[0][1].i = -1 * (mAux[0][1].r * aux1.i + mAux[0][1].i * aux1.r); inv[1][0].r = -1 * (mAux[1][0].r * aux1.r - mAux[1][0].i * aux1.i); inv[1][0].i = -1 * (mAux[1][0].r * aux1.i + mAux[1][0].i * aux1.r); inv[1][1].r = mAux[0][0].r * aux1.r - mAux[0][0].i * aux1.i; inv[1][1].i = mAux[0][0].r * aux1.i + mAux[0][0].i * aux1.r; /* computing tU * inv */ tUinv[0][0].r = tU[0][0].r * inv[0][0].r - tU[0][0].i * inv[0][0].i + tU[0][1].r * inv[1][0].r - tU[0][1].i * inv[1][0].i; tUinv[0][0].i = tU[0][0].r * inv[0][0].i + tU[0][0].i * inv[0][0].r + tU[0][1].r * inv[1][0].i + tU[0][1].i * inv[1][0].r; tUinv[0][1].r = tU[0][0].r * inv[0][1].r - tU[0][0].i * inv[0][1].i + tU[0][1].r * inv[1][1].r - tU[0][1].i * inv[1][1].i; tUinv[0][1].i = tU[0][0].r * inv[0][1].i + tU[0][0].i * inv[0][1].r + tU[0][1].r * inv[1][1].i + tU[0][1].i * inv[1][1].r; tUinv[1][0].r = tU[1][0].r * inv[0][0].r - tU[1][0].i * inv[0][0].i + tU[1][1].r * inv[1][0].r - tU[1][1].i * inv[1][0].i; tUinv[1][0].i = tU[1][0].r * inv[0][0].i + tU[1][0].i * inv[0][0].r + tU[1][1].r * inv[1][0].i + tU[1][1].i * inv[1][0].r; tUinv[1][1].r = tU[1][0].r * inv[0][1].r - tU[1][0].i * inv[0][1].i + tU[1][1].r * inv[1][1].r - tU[1][1].i * inv[1][1].i; tUinv[1][1].i = tU[1][0].r * inv[0][1].i + tU[1][0].i * inv[0][1].r + tU[1][1].r * inv[1][1].i + tU[1][1].i * inv[1][1].r; /* finally the matrix */ auxm1 = mTtD[0][0].r * tUinv[0][0].r - mTtD[0][0].i * tUinv[0][0].i; auxm2 = mTtD[0][0].r * tUinv[0][0].i + mTtD[0][0].i * tUinv[0][0].r; auxm3 = mTtD[1][0].r * tUinv[0][1].r - mTtD[1][0].i * tUinv[0][1].i; auxm4 = mTtD[1][0].r * tUinv[0][1].i + mTtD[1][0].i * tUinv[0][1].r; mB[0][0].r = rD[0][0].r + (auxm1 + auxm3); mB[0][0].i = rD[0][0].i + (auxm2 + auxm4); auxm1 = mTtD[0][1].r * tUinv[0][0].r - mTtD[0][1].i * tUinv[0][0].i; auxm2 = mTtD[0][1].r * tUinv[0][0].i + mTtD[0][1].i * tUinv[0][0].r; auxm3 = mTtD[1][1].r * tUinv[0][1].r - mTtD[1][1].i * tUinv[0][1].i; auxm4 = mTtD[1][1].r * tUinv[0][1].i + mTtD[1][1].i * tUinv[0][1].r; mB[0][1].r = rD[0][1].r + (auxm1 + auxm3); mB[0][1].i = rD[0][1].i + (auxm2 + auxm4); auxm1 = mTtD[0][0].r * tUinv[1][0].r - mTtD[0][0].i * tUinv[1][0].i; auxm2 = mTtD[0][0].r * tUinv[1][0].i + mTtD[0][0].i * tUinv[1][0].r; auxm3 = mTtD[1][0].r * tUinv[1][1].r - mTtD[1][0].i * tUinv[1][1].i; auxm4 = mTtD[1][0].r * tUinv[1][1].i + mTtD[1][0].i * tUinv[1][1].r; mB[1][0].r = rD[1][0].r + (auxm1 + auxm3); mB[1][0].i = rD[1][0].i + (auxm2 + auxm4); auxm1 = mTtD[0][1].r * tUinv[1][0].r - mTtD[0][1].i * tUinv[1][0].i; auxm2 = mTtD[0][1].r * tUinv[1][0].i + mTtD[0][1].i * tUinv[1][0].r; auxm3 = mTtD[1][1].r * tUinv[1][1].r - mTtD[1][1].i * tUinv[1][1].i; auxm4 = mTtD[1][1].r * tUinv[1][1].i + mTtD[1][1].i * tUinv[1][1].r; mB[1][1].r = rD[1][1].r + (auxm1 + auxm3); mB[1][1].i = rD[1][1].i + (auxm2 + auxm4); /* computing Frechet derivatives */ frechetRm(E, tD, tUinv, mTtD, mT, rU, inv, wThick, am, bm, iL); } /* computing final phase-shift matrix */ /* square-root of Pslowness^2 - uuC */ auxm1 = PSlowness[0][0].r - uuC.r; auxm2 = PSlowness[0][0].i - uuC.i; auxm3 = sqrt(auxm1 * auxm1 + auxm2 * auxm2); auxm3 = sqrt(auxm3); angle = atan2(auxm2, auxm1) / 2; am.r = auxm3 * cos(angle); am.i = auxm3 * sin(angle); /* am * I */ amI.r = -am.i; amI.i = am.r; /* square-root of SSlowness^2 - uuC */ auxm1 = SSlowness[0][0].r - uuC.r; auxm2 = SSlowness[0][0].i - uuC.i; auxm3 = sqrt(auxm1 * auxm1 + auxm2 * auxm2); auxm3 = sqrt(auxm3); angle = atan2(auxm2, auxm1) / 2;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -