⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sufdmod2_pml.su.main

📁 su 的源代码库
💻 MAIN
字号:
 SUFDMOD2_PML - Finite-Difference MODeling (2nd order) for acoustic wave    equation with PML absorbing boundary conditions.			 Caveat: experimental PML absorbing boundary condition version,	may be buggy!								 sufdmod2_pml <vfile >wfile nx= nz= tmax= xs= zs= [optional parameters] Required Parameters:							 <vfile		file containing velocity[nx][nz]		 >wfile		file containing waves[nx][nz] for time steps	 nx=			number of x samples (2nd dimension)		 nz=			number of z samples (1st dimension)		 xs=			x coordinates of source				 zs=			z coordinates of source				 tmax=			maximum time					 Optional Parameters:							 nt=1+tmax/dt		number of time samples (dt determined for stability) mt=1			number of time steps (dt) per output time step	 dx=1.0		x sampling interval				 fx=0.0		first x sample					 dz=1.0		z sampling interval				 fz=0.0		first z sample					 fmax = vmin/(10.0*h)	maximum frequency in source wavelet		 fpeak=0.5*fmax	peak frequency in ricker wavelet		 dfile=		input file containing density[nx][nz]		 vsx=			x coordinate of vertical line of seismograms	 hsz=			z coordinate of horizontal line of seismograms	 vsfile=		output file for vertical line of seismograms[nz][nt] hsfile=		output file for horizontal line of seismograms[nx][nt] ssfile=		output file for source point seismograms[nt]	 verbose=0		=1 for diagnostic messages, =2 for more		 abs=1,1,1,1		Absorbing boundary conditions on top,left,bottom,right 			sides of the model. 				 		=0,1,1,1 for free surface condition on the top		 ...PML parameters....                                                  pml_max=1000.0        PML absorption parameter                         pml_thick=0           half-thickness of pml layer (0 = do not use PML) Notes:								 This program uses the traditional explicit second order differencing	 method. 								 Two different absorbing boundary condition schemes are available. The  first is a traditional absorbing boundary condition scheme created by  Hale, 1990. The second is based on the perfectly matched layer (PML)	 method of Berenger, 1995.						 Authors:  CWP:Dave Hale           CWP:modified for SU by John Stockwell, 1993.           CWP:added frequency specification of wavelet: Craig Artley, 1993           TAMU:added PML absorbing boundary condition:                Michael Holzrichter, 1998 References: (Hale's absobing boundary conditions) Clayton, R. W., and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seism. Soc. Am., 6,	1529-1540.  Clayton, R. W., and Engquist, B., 1980, Absorbing boundary conditions for wave equation migration, Geophysics, 45, 895-904. Hale, D.,  1990, Adaptive absorbing boundaries for finite-difference modeling of the wave equation migration, unpublished report from the Center for Wave Phenomena, Colorado School of Mines. Richtmyer, R. D., and Morton, K. W., 1967, Difference methods for initial-value problems, John Wiley & Sons, Inc, New York. Thomee, V., 1962, A stable difference scheme for the mixed boundary problem for a hyperbolic, first-order system in two dimensions, J. Soc. Indust. Appl. Math., 10, 229-245. Toldi, J. L., and Hale, D., 1982, Data-dependent absorbing side boundaries, Stanford Exploration Project Report SEP-30, 111-121. References: (PML boundary conditions) Jean-Pierre Berenger, ``A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,''  Journal of Computational Physics, vol. 114, pp. 185-200. Hastings, Schneider, and Broschat, ``Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propogation,''  Journal of the Accoustical Society of America, November, 1996. Allen Taflove, ``Electromagnetic Modeling:  Finite Difference Time Domain Methods'', Baltimore, Maryland: Johns Hopkins University Press, 1995, chap. 7, pp. 181-195. Trace header fields set: ns, delrt, tracl, tracr, offset, d1, d2,                          sdepth, trid

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -