📄 lorenz.par.main
字号:
LORENZ - compute the LORENZ attractor lorenz > [stdout] Required Parameters: none Optional Parameters: rho=28.0 parameter for lorenz equations sigma=10.0 parameter for lorenz equations eta=1.6666667 parameter for lorenz equations y0=1.0 initial value of y[0] y1=-1.0 initial value of y[1] y2=1.0 initial value of y[2] h=.01 increment in time tol=1.e-08 error tolerance stepmax=500 maximum number of steps to compute mode=xy xy-pairs, =yz yz-pairs, =xz xz-pairs, =xyz xyz-triplet Notes: This program is really just a demo showing how to use the differential equation solver rke_solve written by Francois Pinard, based on a modified form of the 4th order Runge-Kutta method, which employs the error checking method of R. England 1969. The output consists of unformated C-style binary floats, of either pairs or triplets as specified by the "mode" paramerter. Examples: lorenz stepmax=1000 mode=xy | xgraph n=1000 & lorenz stepmax=1000 mode=yz | xgraph n=1000 & lorenz stepmax=1000 mode=xz | xgraph n=1000 & The lorenz equations describe a simplified model of a convection cell, and are given by the autonomous system of ODE's x'(t) = sigma * ( y - x ) y'(t) = x * ( rho - z ) - y z'(t) = x * y - eta * z Author: CWP: Aug 2004: John Stockwell
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -