📄 hankel.cwp.lib
字号:
HANKEL - Functions to compute discrete Hankel transformshankelalloc allocate and return a pointer to a Hankel transformerhankelfree free a Hankel transformerhankel0 compute the zeroth-order Hankel transformhankel1 compute the first-order Hankel transformFunction Prototypes:void *hankelalloc (int nfft);void hankelfree (void *ht);void hankel0 (void *ht, float f[], float h[]);void hankel1 (void *ht, float f[], float h[]);hankelalloc:Input:nfft valid length for real to complex fft (see notes below)Returned:pointer to Hankel transformerhankelfree:Input:ht pointer to Hankel transformer (as returned by hankelalloc)hankel0:Input:ht pointer to Hankel transformer (as returned by hankelalloc)f array[nfft/2+1] to be transformedOutput:h array[nfft/2+1] transformedhankel1:Input:ht pointer to Hankel transformer (as returned by hankelalloc)f array[nfft/2+1] to be transformedOutput:h array[nfft/2+1] transformedNotes:The zeroth-order Hankel transform is defined by: Infinity h0(k) = Integral dr r j0(k*r) f(r) 0where j0 denotes the zeroth-order Bessel function.The first-order Hankel transform is defined by: Infinity h1(k) = Integral dr r j1(k*r) f(r) 0where j1 denotes the first-order Bessel function.The Hankel transform is its own inverse.The Hankel transform is computed by an Abel transform followed bya Fourier transform.References:Hansen, E. W., 1985, Fast Hankel transform algorithm: IEEE Trans. onAcoustics, Speech and Signal Processing, v. ASSP-33, n. 3, p. 666-671.(Beware of several errors in the equations in this paper!)Authors: Dave Hale, Colorado School of Mines, 06/04/90
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -