📄 triseis.c
字号:
EdgeUseAttributes *eua,*euma; Face *f; FaceAttributes *fa; /* get input parameters */ sigma = rs->sigma; x = rs->x; z = rs->z; px = rs->px; pz = rs->pz; t = rs->t; q1 = rs->q1; p1 = rs->p1; q2 = rs->q2; p2 = rs->p2; kmah = rs->kmah; nref = rs->nref; eu = rs->eu; f = rs->f; atten = rs->atten; ampli = rs->ampli; ampliphase = rs->ampliphase; /* check for boundary */ if (eu->euMate->f==NULL) return 0; /* determine sloth on this side of edge */ fa = f->fa; s00 = fa->s00; ds1dx = fa->dsdx; ds1dz = fa->dsdz; s1 = s00+ds1dx*x+ds1dz*z; /* determine density on this side */ dens1 = fa->dens; /* determine sloth on other side of edge */ eum = eu->euMate; f = eum->f; fa = f->fa; s00 = fa->s00; ds2dx = fa->dsdx; ds2dz = fa->dsdz; s2 = s00+ds2dx*x+ds2dz*z; /* determine density on other side of the edge */ dens2 = fa->dens; if (dens1==FLT_MAX) dens1 = 1.0; if (dens2==FLT_MAX) dens2 = 1.0; /* if sloth function not same on both sides of edge */ if (s1!=s2 || ds1dx!=ds2dx || ds1dz!=ds2dz || dens1!=dens2) { /* edge vector */ dx = eum->vu->v->y-eu->vu->v->y; dz = eum->vu->v->x-eu->vu->v->x; /* fractional distance along edge */ frac = (ABS(dx)>ABS(dz)) ? (x-eu->vu->v->y)/dx : (z-eu->vu->v->x)/dz; /* linearly interpolate unit vector g tangent to edge */ eua = eu->eua; euma = eum->eua; if (eua!=NULL && euma!=NULL) { gx = frac*euma->tx-(1.0-frac)*eua->tx; gz = frac*euma->tz-(1.0-frac)*eua->tz; } else { gx = -dx; gz = -dz; } scale = 1.0/sqrt(gx*gx+gz*gz); gx *= scale; gz *= scale; /* unit vector h normal to edge */ hx = -gz; h_z = gx; /* remember ray parameters on this side */ px1 = px; pz1 = pz; /* rotated ray parameters on this side */ px1r = px*h_z-pz*hx; pz1r = px*hx+pz*h_z; /* rotated ray parameters on other side */ px2r = px1r; pz2rs = s2-px2r*px2r; /* post-critical */ if (pz2rs<=0.0) return 0; /* grazing incidence */ if (pz1r*pz1r <= 0.008*s1) return 0; pz2r = sqrt(pz2rs); /* ray parameters on other side */ px = px2r*h_z+pz2r*hx; pz = pz2r*h_z-px2r*hx; /* curvature term */ c1ov1 = pz1r; c2ov2 = pz2r; oc2s = s2/pz2rs; if (eua!=NULL && euma!=NULL) { g = frac*euma->c-(1.0-frac)*eua->c; cterm = g*oc2s*(c1ov1-c2ov2); } else { cterm = 0.0; } /* update dynamic ray parameters */ scale = (pz2r*sqrt(s1))/(pz1r*sqrt(s2)); q1 = q1*scale; p1 = p1/scale+cterm*q1; q2 = q2*scale; p2 = p2/scale+cterm*q2; /* velocity derivatives tangent and normal to ray */ fac1 = -0.5/(s1*s1); fac2 = -0.5/(s2*s2); dv1dl = fac1*(px1*ds1dx+pz1*ds1dz); dv2dl = fac2*(px*ds2dx+pz*ds2dz); dv1dm = fac1*(pz1*ds1dx-px1*ds1dz); dv2dm = fac2*(pz*ds2dx-px*ds2dz); /* inhomogeneity term */ iterm = -px1r*oc2s *(2.0*(dv1dm*c1ov1-dv2dm*c2ov2)+px1r*(dv1dl-dv2dl)); /* update dynamic ray parameters */ p1 += iterm*q1; p2 += iterm*q2; /* transmission effects on amplitudes */ if (s1!=s2 || dens1!=dens2) { taper = (px1r*px1r)/s2; /* if close to critical*/ taper = (taper>TAPER)?cos((taper-TAPER)*5.0*PI):1.0; coeff1 = dens2/dens1; coeff2 = pz2r/pz1r; coeff = 1.0+(coeff1-coeff2)/(coeff1+coeff2); /* complete amplitude coeff*/ ampli *= coeff*sqrt(pz2r/pz1r)*taper; } } /* return new raystep */ rsnew->sigma = sigma; rsnew->x = x; rsnew->z = z; rsnew->px = px; rsnew->pz = pz; rsnew->t = t; rsnew->q1 = q1; rsnew->p1 = p1; rsnew->q2 = q2; rsnew->p2 = p2; rsnew->kmah = kmah; rsnew->nref = nref; rsnew->eu = eum; rsnew->f = f; rsnew->ampli = ampli; rsnew->ampliphase = ampliphase; rsnew->atten = atten; return 1;}static void reflectRayFromEdge (RayStep *rs, RayStep *rsnew)/* Reflect ray from edge and return new RayStep. */{ int kmah,nref; float sigma,x,z,px,pz,t,q1,p1,q2,p2, s00,dsdx,dsdz,s, px1,pz1,pxr,pzr, c1ov1,c2ov2,oc2s,g,cterm,iterm, dv1dl,dv2dl,dv1dm,dv2dm, scale,gx,gz,hx,h_z,frac,dx,dz; float atten,ampli,ampliphase,dens1,dens2,s2, ds2dx,ds2dz,temp1,temp2; EdgeUse *eu,*eum; EdgeUseAttributes *eua,*euma; Face *f,*fn; FaceAttributes *fa; /* get input parameters */ sigma = rs->sigma; x = rs->x; z = rs->z; px = rs->px; pz = rs->pz; t = rs->t; q1 = rs->q1; p1 = rs->p1; q2 = rs->q2; p2 = rs->p2; kmah = rs->kmah; nref = rs->nref; eu = rs->eu; f = rs->f; atten = rs->atten; ampli = rs->ampli; ampliphase = rs->ampliphase; /* determine sloth on incident side of edge */ fa = f->fa; s00 = fa->s00; dsdx = fa->dsdx; dsdz = fa->dsdz; s = s00+dsdx*x+dsdz*z; /* determine dens on incident side of edge */ dens1 = fa->dens; /* edge vector */ eum = eu->euMate; /* determine sloth on other side of edge */ fn = eum->f; fa = fn->fa; s00 = fa->s00; ds2dx = fa->dsdx; ds2dz = fa->dsdz; s2 = s00+ds2dx*x+ds2dz*z; /* determine density on other side of the edge */ dens2 = fa->dens; if (dens1==FLT_MAX) dens1 = 1.0; if (dens2==FLT_MAX) dens2 = 1.0; dx = eum->vu->v->y-eu->vu->v->y; dz = eum->vu->v->x-eu->vu->v->x; /* fractional distance along edge */ frac = (ABS(dx)>ABS(dz)) ? (x-eu->vu->v->y)/dx : (z-eu->vu->v->x)/dz; /* linearly interpolate unit vector g tangent to edge */ eua = eu->eua; euma = eum->eua; gx = frac*euma->tx-(1.0-frac)*eua->tx; gz = frac*euma->tz-(1.0-frac)*eua->tz; scale = 1.0/sqrt(gx*gx+gz*gz); gx *= scale; gz *= scale; /* unit vector h normal to edge */ hx = -gz; h_z = gx; /* remember incident ray parameters */ px1 = px; pz1 = pz; /* rotated incident ray parameters */ pxr = px*h_z-pz*hx; pzr = px*hx+pz*h_z; /* rotated reflected ray parameters */ pxr = pxr; pzr = -pzr; /* reflected ray parameters */ px = pxr*h_z+pzr*hx; pz = pzr*h_z-pxr*hx; /* curvature term */ c1ov1 = c2ov2 = -pzr; oc2s = s/(pzr*pzr); g = frac*euma->c-(1.0-frac)*eua->c; cterm = g*oc2s*(c1ov1+c2ov2); /* update dynamic ray parameters */ scale = -c2ov2/c1ov1; q1 = q1*scale; p1 = p1/scale+cterm*q1; q2 = q2*scale; p2 = p2/scale+cterm*q2; /* if sloth not constant */ if (dsdx!=0.0 || dsdz!=0.0) { /* velocity derivatives tangent and normal to ray */ scale = -0.5/(s*s); dv1dl = scale*(px1*dsdx+pz1*dsdz); dv2dl = scale*(px*dsdx+pz*dsdz); dv1dm = scale*(pz1*dsdx-px1*dsdz); dv2dm = scale*(pz*dsdx-px*dsdz); /* inhomogeneity term */ iterm = -pxr*oc2s* (2.0*(dv1dm*c1ov1+dv2dm*c2ov2)+ pxr*(dv1dl-dv2dl)); /* update dynamic ray parameters */ p1 += iterm*q1; p2 += iterm*q2; } /* increment number of reflections */ ++nref; /* pre-critical */ if (s2-pxr*pxr>=0) { temp1 = -pzr*dens2/dens1/sqrt(s); temp2 = sqrt(s2/s-(pxr*pxr/s)); ampli *= (temp1-temp2)/(temp1+temp2); } else { ampliphase -= 2*atan(-sqrt(pxr*pxr-s2)*dens1/(dens2*pzr)); } /* return new raystep */ rsnew->sigma = sigma; rsnew->x = x; rsnew->z = z; rsnew->px = px; rsnew->pz = pz; rsnew->t = t; rsnew->q1 = q1; rsnew->p1 = p1; rsnew->q2 = q2; rsnew->p2 = p2; rsnew->kmah = kmah; rsnew->nref = nref; rsnew->eu = eu; rsnew->f = f; rsnew->ampli = ampli; rsnew->ampliphase = ampliphase; rsnew->atten = atten;}static void evaluateDynamic (float sigma, float px, float pz, float dsdx, float dsdz, float *q1, float *p1, float *q2, float *p2, int *kmah)/* evaluate dynamic ray parameters via modified midpoint method */{ double s0,s1,s2,ss,scale,a,b,c,d,e, q1i,p1i,q2i,p2i,q1o,p1o,q2o,p2o; /* get input dynamic ray parameters */ q1i = *q1; p1i = *p1; q2i = *q2; p2i = *p2; /* trivial case: constant sloth or ray parallel to sloth gradient */ if (pz*dsdx==px*dsdz) { q1o = q1i+p1i*sigma; q2o = q2i+p2i*sigma; p2o = p2i; p1o = p1i; /* else, general case */ } else { /* constants */ s0 = px*px+pz*pz; s1 = px*dsdx+pz*dsdz; s2 = 0.25*(dsdx*dsdx+dsdz*dsdz); ss = (s2*sigma+s1)*sigma+s0; scale = 1.0/sqrt(s0*ss); a = s0+0.5*s1*sigma; b = (0.25*s1*s1/s0-s2)*sigma; c = s0+s1*sigma; d = 0.5*s1+2.0*b; b *= sigma; e = (0.5*s1+s2*sigma)/ss; /* update q1 and q2 */ q1o = scale*(a*(q1i+p1i*sigma)+b*q1i); q2o = scale*(a*(q2i+p2i*sigma)+b*q2i); /* update p1 and p2 */ p1o = scale*(c*p1i+d*q1i)-e*q1o; p2o = scale*(c*p2i+d*q2i)-e*q2o; } /* update kmah index */ if (q2i*q2o>=0.0 && p2i*p2o<0.0 && q2i*p2i<0.0) { *kmah += 2; } else if (q2o==0.0 || q2i*q2o<0.0 || (q2i==0.0 && p2i*p2o<0.0 && q2o*p2o>0.0)) { *kmah += 1; } /* return updated dynamic ray parameters */ *q1 = q1o; *p1 = p1o; *q2 = q2o; *p2 = p2o;}int checkIfSourceOnEdge (Face *tris, float zs, float xs){ float x1,x2,x3,z1,z2,z3,m12,m13,m23,b12,b13,b23,eps; EdgeUse *eu; eu = tris->eu; eps = tris->m->eps; /* get vertices */ x1 = eu->vu->v->y; z1 = eu->vu->v->x; x2 = eu->euCW->vu->v->y; z2 = eu->euCW->vu->v->x; x3 = eu->euCCW->vu->v->y; z3 = eu->euCCW->vu->v->x; /* source is sitting on vertex */ if ((xs-x1)*(xs-x1)+(zs-z1)*(zs-z1)<eps || (xs-x2)*(xs-x2)+(zs-z2)*(zs-z2)<eps || (xs-x3)*(xs-x3)+(zs-z3)*(zs-z3)<eps) return 2; /* check special cases and compute slope of edges */ if (ABS(x1-x2)<0.1*eps) { if (ABS(xs-x1)<0.1*eps) { return 1; } else { m12 = 0.01*FLT_MAX; } } else { m12 = (z1-z2)/(x1-x2); } if (ABS(x1-x3)<0.1*eps) { if (ABS(xs-x1)<0.1*eps) { return 1; } else { m13 = 0.01*FLT_MAX; } } else { m13 = (z1-z3)/(x1-x3); } if (ABS(x2-x3)<0.1*eps) { if (ABS(xs-x2)<0.1*eps) { return 1; } else { m23 = 0.01*FLT_MAX; } } else { m23 = (z2-z3)/(x2-x3); } b12 = z1-m12*x1; b13 = z1-m13*x1; b23 = z2-m23*x2; /* source on edge? */ if (ABS(zs-m12*xs-b12)<0.1*eps || ABS(zs-m13*xs-b13)<0.1*eps || ABS(zs-m23*xs-b23)<0.1*eps) return 1; return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -